QMP 7.1 D/F

Channabasaveshwara Institute of Technology

g C I T (Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi)
wlnes

(ISO 9001:2015 Certified Institution)
Phintcmsigis Homdineis Sl NH 206 (B.H. Road), Gubbi, Tumkur — 572 216. Karnataka.

/S0 90N

Department of Artificial Intelligence and Data Science

MICROCONTROLLER AND EMBEDDED SYSTEMS
PRACTICAL COMPONENT OF IPCC

(Academic year 2022 -2023)

SEMESTER - IV

21CS43
LLab Manual

Name :

USN :

Batch : Section :

CHANNABASAVESHWARA INSTITUTE OF TECHNOLOGY

(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi)
(ISO 9001:2015 Certified Institution)
NH 206 (B.H. Road), Gubbi, Tumkur — 572 216. Karnataka.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

§cir

..J/)nﬂ/qu)zg in Cleademic Eavellence

LABORATORY MANNUAL

Microcontroller and Embedded Systems Laboratory/21CS43

(Effective from the academic year 2022 -2023)

(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi)

(ISO 9001:2015 Certified Institution)
e NH 206 (B.H. Road), Gubbi, Tumkur - 572 216. Karnataka.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Channabasaveshwara Institute of Technology
§CiT

SYLLABUS

MICROCONTROLLER AND EMBEDDED SYSTEMS
[PRACTICAL COMPONENT OF IPCC]

SEMESTER - IV

Subject Code: 21CS43 CIE Marks: 50
Number of Lecture Hours/Week: 03 L+ 02 P SEE Marks: 50
Total Number of Contact Hours: 40T +20 P Exam Hours: 03

CREDITS - 04

Course Learning Objectives: This course (21CS43) will enable students to:

CLO 1: Understand the fundamentals of ARM-based systems, including
programming modules with registers and the CPSR.

CLO 2: Use the various instructions to program the ARM controller.

CLO 3: Program various embedded components using the embedded C program.
CLO 4: Identify various components, their purpose, and their application to the
embedded system's applicability.

CLO 5: Understand the embedded system's real-time operating system and its

application in IoT.

Programs List:

PART A

Conduct the following experiments by writing program using
ARM7TDMI/LPC2148 using an evaluation board/simulator andsoftware tool.

© N o

Sample Programs using Keil Compiler

. Write a program to find the sum of the first 10 integer numbers.

. Write a program to find the factorial of a number.

Write a program to add an array of 16 bit numbers and store the 32 bit result in internal
RAM.

Write a program to find the square of a number (1 to 10) using a look-up table.
Write a program to find the largest or smallest number in an array of 32 numbers.
Write a program to arrange a series of 32 bit numbers in ascending/descending order.

Write a program to count the number of ones and zeros in two consecutive memory
locations.

Display “Hello World” message using Internal UART.
PART -B

Conduct the following experiments on an ARM7TDMI/LPC2148 evaluation
board using evaluation version of Embedded 'C' & Keil Uvision-4 tool/compiler.

1.Interface and Control a DC Motor.

2.Interface a Stepper motor and rotate it in clockwise and anti-clockwise direction.

3.Determine Digital output for a given Analog input using Internal ADC of ARM

controller.

4.Interface a DAC and generate Triangular and Square waveforms.

5.Interface a 4x4 keyboard and display the key code on an LCD.

6. Demonstrate the use of an external interrupt to toggle an LED On/Off.

7.Display the Hex digits O to F on a 7-segment LED interface, with an appropriate delay

in between.

8.Demonstration of IoT applications by using Arduino and Raspberry Pi.

Course Outcomes

At the end of the course, the student will be able to:
CO 1. Explain C-Compilers and optimization
CO 2. Describe the ARM microcontroller's architectural features and program module.
CO 3. Apply the knowledge gained from programming on ARM to different applications.
CO 4. Program the basic hardware components and their application selection method.
CO 5. Demonstrate the need for a real-time operating system for embedded system

applications.

Graduate Attributes

» Engineering Knowledge

e Problem Analysis

e Modern Tool Usage

e Conduct Investigations of Complex Problems

e Design/Development of Solutions

21CS43, MES-LAB

ARM7 based LPC2148 Microcontroller

The full form of an ARM is an advanced reduced instruction set
computer (RISC) machine, and it is a 32-bit processor architecture
expanded by ARM holdings. The applications of an ARM processor
include several microcontrollers as well as processors. The architecture
of an ARM processor was licensed by many corporations for designing ARM
processor-based SoC products and CPUs.

LPC2148 Microcontroller

The LPC2148 microcontroller is designed by Philips (NXP Semiconductor)
with several in-built features & peripherals. Due to these reasons, it will
make more reliable as well as the efficient option for an application
developer. LPC2148 is a 16-bit or 32-bit microcontroller based on ARM7
family.

Programmer's Model

ARM has a 32-bit data bus and a 32-bit address bus. The data types the
processor supports are Words (32 bits), where words must be aligned to
four byte boundaries. Instructions are exactly one word, and data
operations (e.g. ADD) are only performed on word quantities. Load and
store operations can transfer words.

Registers

The processor has a total of 37 registers made up of 31 general 32 bit
registers and 6 status registers. At any one time 16 general registers (RO
to R15) and one or two status registers are visible to the programmer.
The visible registers depend on the processor mode and the other
registers (the banked registers) are switched in to support IRQ, FIQ,
Supervisor, Abort and undefined mode processing. The register bank
organization is shown in below figure. The banked registers are shaded
in the diagram.

In all modes 16 registers, RO to R15, are directly accessible. All
registers except R15 are general purpose and may be used to hold data
or address values. Register R15 holds the Program Counter (PC). When
R15 is read, bits [1:0] are zero and bits [31:2] contain the PC. A
seventeenth register (the CPSR - Current Program Status Register) is also
accessible. It contains condition code flags and the current mode bits
and may be thought of as an extension to the PC. R14 is used as the
subroutine link register and receives a copy of R15 when a Branch and

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 1 -

21C543, MES-LAB

Link instruction is executed. It may be treated as a general- purpose
register at all other times. R14_svc, R14_irq, R14_fiq, R14_abt and
R14_und are used similarly to hold the return values of R15 when
interrupts and exceptions arise, or when Branch and Link instructions
are executed within interrupt or exception routines.

General Registers and Program Counter Modes

User32 FliQ32 Supervisor32 Abort32 IRQ32 Undefined32
R Rl RO RO RO RO

R R1 R1 A1 R R1

R2 R2 Rz R2 R2 R2

R3 R3 R3 R3 R3 R3

R4 A4 R A R4 R4

RS RS RS R5 RS RS

R RE RE) R RE

RT RT RT AT R? RT

Ra RE_fig RE B8 R8 &

Ra RE_g Rg RE Rg Ro

R10 R10_fig R10 R10 R10 R10

R R11_fig R11 R11 A1 R11

R12 R12_fiq R12 Ri2 R12 R12
R13 R13_fig R13_sve R13_abt R13_ig R13_und
R4 R14_fig R14_sve R14_abt R14_irg R14_und
R15 {PC) R15 (PC) R15 (PC) R15 (PC) R15 {PC) R15 (PC)

Program Status Registers

CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_fig SPSR_svc SPSR_abt SPSR_im SPSR_und

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 2 -

21CS543, MES-LAB

Basic and Commonly used Instruction Set of ARM in
programming

Data Processing Instructions

Move instructions
Arithmetic instructions
Logical instructions
Comparison instructions

Multiply instructions

MOV : move
MOV IO, r1;rO=r1
MOV r0, #5; r0 =5
MVN : move (negated)

MVN r0, r1; r0 = NOT (r1) =~ (r1)

Example 1
PRE: r5 =5,r7 = 8;
MOV r7, r5, LSL #2; r7 =r5 << 2 =r5*%4
POST: r5=5,r7 = 20

LSL: logical shift left

x <<y, the least significant bits are filled with zeroes
LSR: logical shift right:

(unsigned) x >>y, the most significant bits are filled with zeroes
ASR: arithmetic shift right

(signed) x >>y, copy the sign bit to the most significant bit
ROR: rotate right

((unsigned) x >>y) | (x << (32-y))
RRX: rotate right extended

c flag <<31 | ((unsigned) x >> 1)

Performs 33-bit rotate, with the CPSR’s C bit being inserted above
sign bit of the word

Example 2

PRE: r0 = 0x00000000, r1 = 0x80000004
MOV r0, r1, LSL #1 ; r0 = r1 *2

POST r0 = 0x00000008,r1 = 0x80000004

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 3 -

21CS543, MES-LAB

Arithmetic Instructions
Syntax: <instruction> {<cond>} {S} Rd, Rn, N
N: a register or immediate value
ADD : add
ADDrO, r1, r2; rO=r1 +r2
ADC : add with carry
ADCrO,r1, r2;rO=r1+r2+C
SUB : subtract
SUBrO,r1, r2; rO=r1-r2
SBC : subtract with carry
SUCr0, r1,r2;rO=r1-r2+C-1
RSB : reverse subtract
RSBrO,r1, r2;r0O=r2-ri1
RSC : reverse subtract with carry
RSCr0,r1, r2;r0O=r2-r1+C-1
MUL : multiply
MULTO,r1, r2; rO=r1xr2
MLA : multiply and accumulate

MLATYO, r1, r2, r3;rO=r1xr2 +r3

Logical Operations
Syntax: <instruction> {<cond>} {S} Rd, RN, N
N: a register or immediate value
AND : Bit-wise and
ORR : Bit-wise or
EOR : Bit-wise exclusive-or
BIC : bit clear

BIC r0, r1, r2; r0 = r1 & Not (r2)
Example 3:

PRE: r1 = Ob1111, r2 = 0b0101

BIC r0, r1, r2; rO = r1 AND (NOT (r2))

POST: r0=0b1010
Comparison Instructions
Compare or test a register with a 32-bit value Do not modify the registers
being compared or tested But only set the values of the NZCV bits of the
CPSR register. Do not need to apply to S suffix for comparison
instruction to update the flags in CPSR register

Syntax: <instruction> {<cond>} {S} Rd, N

N: a register or immediate value

CMP: compare
CMP rO0, r1; compute (r0 - r1) and set NZCV
CMN: negated compare

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 4 -

21CS543, MES-LAB

CMP rO0, r1; compute (rO + r1) and set NZCV
TST: bit-wise AND test

TST r0, r1; compute (rO AND r1) and set NZCV
TEQ: bit-wise exclusive-or test

TEQ r0, r1; compute (rO EOR r1) and set NZCV

Example 4
PRE: CPSR = nzcvqiFt_ USER, r0=4,1r9 =4
CMP rO, r9

POST: CPSR = nZcvqiFt_USER

Multiply Instruction

Syntax:
MLA{<cond>} {S} Rd, Rm, Rs, Rn
MUL{<cond>} {S} Rd, Rm, Rs
MUL : multiply
MUL rO, r1, r2; rO = r1*r2
MLA : multiply and accumulate

MLA 1O, r1,r2, r3; r0 = (r1*r2) + r3

Syntax: <instruction>{<cond>} {S} RdLo, RdHi, Rm, Rs
Multiply onto a pair of register representing a 64-bit value
UMULL : unsigned multiply long
UMULL rO, r1, r2, r3; [r1,r0] = r2*r3
UMLAL : unsigned multiply accumulate long
UMLAL rO0, r1, r2, r3; [r1,r0] = [r1,r0]+(r2*r3)
SMULL: signed multiply long
SMULL rO0, r1, r2, r3; [r1,r0] = r2*r3
SMLAL : signed multiply accumulate long

SMLAL rO0, r1, r2, r3; [r1,r0] = [r1,rO]+(r2*r3)
Branch Instructions (Cont.)
Syntax
B{<cond>} lable
BL{<cond>} lable
B : branch
B label; pc (program counter) = label Used to change execution flow
BL : branch and link
BL label; pc = label, Ir = address of the next address after the BL
Similar to the B instruction but can be used for subroutine
Call Overwrite the link register (Ir) with a return address

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 5 -

21CS543, MES-LAB

Example 5
B forward
ADD rl1, r2, #4
ADD ro0, r6, #2
ADD r3, r7, #4
Forward
SUB rl, r2, #4
Backward
SUBrl,r2, #4

B backward

Load-Store Instructions
Transfer data between memory and processor registers
Three types
Single-register transfer
Multiple-register transfer

Swap

Moving a single data item in and out of register Data item can be
A word (32-bits), Halfword (16-bits), Bytes (8-bits)
Syntax
<LDR|STR>{<cond>}{B} Rd, addressingl
LDR{<cond>}SB|H|SH Rd, addressing2
STR{<cond>} H Rd, addressing?2
LDR : load word into a register from memory
LDRB : load byte
LDRSB : load signed byte
LDRH : load half-word
LSRSH : load signed halfword
STR: store word from a register to memory
STRB : store byte
STRH : store half-word
Example 7
LDR r0, [r1] ;= LDR rO, [r1, #0] ;rO = mem32[rl]
STR 1O, [r1];=STR O, [r1, #0] ;mem32[rl]= r0 Register r1 is called the
base address register

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 6 -

21CS543, MES-LAB

ARM LPC 2148 FEATURES:

e 16-bit/32-bit ARM7TDMI-S Microcontroller.

¢ 40 kB of on-chip static RAM and 512 kB of on-chip flash memory.

¢ In-System Programming/In-Application Programming (ISP/IAP) via on-
chip boot loader software.

¢ Embedded ICE RT and Embedded Trace interfaces offer real-time
debugging with the on-chip Real Monitor software and high-speed
tracing of instruction execution.

e USB 2.0 Full-speed compliant device controller with 2 kB of endpoint
RAM.

e Two 10-bit ADCs provide a total of 14 analog inputs

e Single 10-bit DAC provides variable analog output

e Two 32-bit timers/external event counters (with four capture and four
compare channels each)

e PWM unit (six outputs)

¢ Watchdog Timer.

¢ Low power Real-Time Clock (RTC) with independent power and 32
kHz clock input.

e Multiple serial interfaces including two UARTS, two Fast I°C-bus (400
kbit/s), SPI and SSP with buffering and variable data length
capabilities.

e Vectored Interrupt Controller (VIC) with configurable priorities and
vector addresses.

¢ 60 MHz maximum CPU clock available from programmable on-chip
PLL with settling time of 100 us.

¢ On-chip integrated oscillator operates with an external crystal from 1
MHz to 25 MHz

e Power saving modes include Idle and Power-down.

¢ Individual enable/disable of peripheral functions as well as peripheral

clock scaling for additional power optimization.

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 7 -

21CS543, MES-LAB

USE
{Power Supply)

F"k"“! Ell '__1
Crvstal
1200H=
ARMT —.
LPC214

UART O
BLAN3232
UARTI

Load Swarch

Feset
Hwitch

| PORT Pins

LPC 2148 TECHNICAL SPECIFICATIONS:

¢ Microcontroller: LPC2148 with 512K on chip memory

¢ Crystal for LPC2148: 12Mhz

¢ Crystal for RTC: 32.768KHz

¢ 6 - 10pin Berg headers for external interfacing(GPIOs)

¢ No separate programmer required (Program with Flash Magic usingon-
chip boot loader)

¢ No Separate power adapter required (USB port as power source)

e 20pin(2X10) FRC JTAG connector for Programming and debugging

e 16 Pin Berg Header for LCD Interfacing

e Two RS-232 Interfaces (UARTO and UART1)

¢ Real-Time Clock with Battery Holder

e 1 Analog Potentiometer connected to ADC

e 4 USER Switches

e 8 USER LEDs

¢ Reset and Boot loader Switches

e On Board Buzzer Interface

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 8 -

21CS543, MES-LAB

HOW TO USE KEIL uVISION4
For ARM7 (LPC2148)
Step By Step

Keil is on the tool which is widely used in Industry, KEIL has tools for
ARM, Cortex-M, Cortex-R, 8051, C166, and 251 processor families. In

this article we are going to discuss KEIL tools for ARM. The development
tools of for ARM include following...

pvision IDE v4

Compiler for ARM (armcc)
MicroLib (C library)
Assembler for ARM (amasm)
Linker For ARM (armLink)

G Wi e

Step1: Click for KEIL pVISION4 Icon . Which appears after Installing Keil
KEIL pVISION4. This will open uvison IDE.

> IKEIL
uVision'4

Integrated Development Envircenment

Copyright & 1997 - 2005 Keil Software, 2005 - 2009 ARM Ltd. All rights reserved.

This product is protected by US and international laws.

Keil Setup to Generate .Hex File

Step2: Click on Project Menu, Then New pVison Project.

File' Edit View | Project | Flash Debug Peripherals Tools SYCS Window Help
|_i I_'? A ﬁ | Mew piision Project... | i

R

| Mew Multi-Project Workspace. ..

| Cpen Project...
Export 3
Manage »

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 9 -

21CS543, MES-LAB

Step3: Create New Project Folder named as “Keil Test”.

Create New Project

Savein |3 Keil Test

~| = = ef E-

My Recent
Documents

Ev'

=y

Deskiop

\

My Documents

My Computer

« |
. My Metwork File name: |LED an amm7 ~] Save |
Step 4: f Save as type: | Froject Files [.uvproi] ~ Cancel | SeleCt Target
YVendor, MNP [founded by Philips]
Device: LPC2148
Toolzet: ARM
Data baze Diescription:
: E'.'._E. LPC2141 A ARMTTORMI-S bazed high-performance 32-bit BISC Microcontroller with Tk
L LPC214z H 512KEB on-chip Flash ROM with In-Sestem Programming [15P] and In-Applic
i £ LPC2 44 Two 10bit ADCs with 14 channels, 158 2.0 Full Speed Device Controller
i Twio UART 2, one with full modem interface.
‘ g LPC2146 Twio |2C zenial interfaces, Two SPI zenal interfaces
: LPC2148 Two 32-bit timerz, watchdog Timer, P it
] LPC2194 = Feal Time Clock with optional battery backup,
i £ LPC2194/01 Brown out detect circuit
i €3 LPC2210 General purpoze /0 pinz.
: CPU clock up to B0 kMHz, On-chip civstal oscillator and On-chip PLL
3 LPCzz10/0
£ LPC2n2
E3 LPC2z12/01
£ LPC2214
E3 LPC2214/01 b
LR | @ | = | >
Device

Step 5: Then select specific chip i.e. LPC2148.

For ALP program, CLICK “NO”, For “C” program click on “YES”

.\:{/ Zopy Philips LFCZ100 Starkup Code ko Project Folder and Add File to Project 7

Dept. of AD, CIT, Gubbi- 572 216

Page No. - 10 -

21C543, MES-LAB

Step 6: Then you will see following window

(| LED on ARM7 - pVision4

File Edit “iew Project Flash Debug Peripherals

Dﬁuﬂ RN o W T o i -'rj.
x‘ﬁllllﬂl@i._i F1 Target 1 2

Step 7: Now you see Startup.s is already added which is necessary for
running code for Keil.

Note: Code wills Not Run without Startup.s

Startup.s is available in C:\Keil\ARM\Startup\Philips.

(| LED on ARM7 - pVision4

File Edit Miew Project Flash Debug Pe

Dﬁ'dﬁ J'l.l—_".-'i"l

Pk (R RN g i ¥ Taget1

=5 Source Group 1
£ Skartup.s

Step 8: Now Click on File Menu and Click on New.

File | Edit Wew Project Flash Debug Peripherals Tools SYCS W
(0] wew. kb || m o P |

5 Open Chl+0
Close

7] Sove kS
Save fs..,

@l save al

Device Database...

License Management. ..

Print Setup,..

i

Print... Chrl+P

Print Preview

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 11 -

Step 09: Write Code for Blink LED in C OR ASM

and FileName.c/ASM Save.

Note: Don’t forget to save .c/ASM Extension.

h Debug Peripherals Tools SWC5 Window Help

.‘) ’P PRI
o Ty
X I.[j Text1* |

#incTude <LPCZ14x. H>

#define
#define

BUZZER (1 << 25)
LED (1 << 31)

#define
#define
#define

LED_DIR IQODIR
LED_SET IOOSET
LED_CLR TIoOCLR

#define
#define
#define

BUZZER_DIR IOL1DIR
BUZZER_SET IO1SET
BUZZER_CLR IOLCLR

void delaymsunsigned int it
1

unsigned int i;
unsigned THE 3
orCi=0; i<itime; T++)

for(j=0; J<500; j++)
main Cvoid)
BUZZER_DIR=BUZZER ;
LEC_DIR=LED;
while(l)

IS, D

Save jn:] 1) Kl Test

My Recent
Documeits

Fr
L&
Desktop

s

by Documents

ter

o
gl
3
=

My Metwork,
Places

B Q X JEERS

|[Z] LED on ARM?
||=]LED on ARM7
|] LED on ARMT_Target 1.dep

i Startup,

5

S

File name:

Save az typ

N
(|LED.d {

Step 10: Now you Window in C Syntax.

(%I LED on ARM7 - pVision4

File ~ Edit ew Project Flash Debug Peripherals Tools 3WCS window Help
RN Y = = /= Jf |
i | §Y | Target A R
Project > & X | [epct |
[=223 Target 1 | o Pinclude <LPCzi4x.H-
[=-£5 Source Group 1 0z
- [#] Startup.s 03 #define BUZZER (1 << 25]
04 #define LED (1 << 31)
05
0 #Hdefine LED DIFR IQODIR

Dept. of AD, CIT, Gubbi- 572 216

Page No. - 12 -

Step 11: Now you add LED.c file by adding Source Group 1 Add files to

Group ‘Source Group 1’.

(W LED on ARM7 - pVision4

File Edit Wew Project Flash Debug

Peripherals Tools SWCS Window

Step 12: Add LED.C file.

Add Files to Group Source Group 1°

= L W e | f= =
L §§ | Tagett I R
[Froject 3 [et |
=823 Target 1 1 01 #include <LPCZ14x.H>
= X Options For Group 'Source Group 1., e e
- e
il DODIR
. OOSET
DOCLE
b Rebuild all target files

Build target F? B To1l
r e Fils T I01:
i 1 R IOic
&dd Group, .. gmed i

Add Files to Group 'Source Group 1°... =2

Remove Group "Source Group 1' and its Files al

Loak in:] [0 Keil Test

| - & ek B

B

et
P
File name: [LED Add |
Files of type:]ESource file [".c] _.’_] s
Dept. of AD, CIT, Gubbi- 572 216 Page No. - 13 -

Step 13: Now Click on Options for Target ‘Target 1’.

Step 14: Go to Options for Target “Target 1’. Click on Check Box Create
HEX File.

Options for Target ‘Target 1°

Devicei Target Output] Listing] User] CHE++] Asm] Linker] Debug] Utilities]

Select Folder for Objects. .. | Hame of Executable: ||-ED on ARM7

* Create Executable: ALED on ARM7T

¥ Debug Infarmation [Create Batch File

[+ EBrowse Information

" Create Librane: SLED on &RM7 LIB

0k | Cancel Defaults Help

Step 15: Then go to Linker. Click on Use Memory Layout for Target
Dialog.

Options for Target ‘Target 1°

Device] Target] Dutputi Listingi Ll zer] E£C++] Agm Debug] Utilities]

¥ Lsze Memory Layout from T arget Dialog

[Make Fw Sections Position Independent R0 Base:

[~ Make RO Sections Position Independent
Ao Baze
[~ Donr't Search Standard Libraries

W Report ‘might fail' Conditions as Erars Ml

Scatter
File [

Mizc
cantrals

Linker |-cpu ARMITOMI "0 --ghrict --zcatter "LED on ARM7 2ot
control |--auboat --zummary_stderr -info summarysizes -map --sref --callgraph -symbole
glring

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 14 -

Step 16: Then Click on Rebuild All Target Files

(% LED on ARM7 - pVision4
File Edit Miew Project Flash Debug Peripherals Tools 3WCS5 Window Help
MRE=ES N N EEER) L = 2= e fie LY

roject & e |
S IUBER Rebuidalltargetfies | | 01 #include <LPCzidx.H>
=5 Starosaroap i nz
- [#] Startup.s 03 #define BUZZER (1 << 25)
= LED-C 04 #Hdefine EUZZIER_DIER IO1DIR
"o [] Ipc214x.h 05 #define BUZZER SET IO13ET
0 #Hdefine EUZZIER_CLE IOQ1CLR
07
08 woid delavims (unsigned int itci
nm
10 unsigned int i:;
11 unsgigned int j;
12 for(i=0;i<itime;i++)
13 for (j=0;3<500;:3++):

?E Target 1

=¥ Rebuild

Step 17: Now you see 0 Error(s), 0 Warning (s). Then Hex File will create
in Specific Folder. Now to download it for you target hardware.

| Build Dukput

Euild target 'Target 1!

assembling Startup.s...

compiling LED.o. ..

linking. ..

Program Size: Code=830 RO-data=16 RU-datsa=0 ZI-data=125¢
FrowmELF: creating hex file...

"LED on ARM7.axf"™ - 0 Error(s), 0 Warningis).

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 15 -

21CS43, MES-LAB

Part A

Program1-Sample Programs using Keil Compiler:

AIM: To write and simulate ARM assembly language programs for data
transfer, arithmetic and logical operations (Demonstrate with the help of a

suitable program).

1. Data Transfer.

The below assembly level program moves the 32 bit data from register to register.

Registers - 0
Register | Walue I_‘
area movt, code, readonly =/ Current
RO Ox00000000
entry R1 000000005
. . . ‘R2 0=00000002
mov r1,#0005 ; Movimmediate 32 bit data torl 55 R
mov r2,#0002 ; Mov immediate 32 bit data to rl 2; g"gggggggg
=
movr3,rl ; Register-Register movement RE 0+00000000
: . R Ox00000000
mov r4,r2 ; Register-Register movement Ra 000000000
Fa O=00000000
K10 Ox00000000
stop b stop ; End of the program R11 0x00000000
d Ri1z2 0=00000000 —
€n R12 (5P 000000000
R14 [LR] C=O0000000
R15[PC] O=000000710
+- CPSH Ox000000d3
+- SPSH Ox00000000
2. Arithmetic Operations
A. Addition, Subtraction and Multiplication:
area addt, code, readonly HSEEE AR
entr Register Walue I:
y) . . = Current
mov rl1,#0005 ; Mov immediate 32 bit data torl RO 000000000
mov r2,#0002 : Mov immediate 32 bit data to r2 i P
addr3,r2,r1 ; Add the contents present in r2 with the 13
contents of r1 and store in r3
subr5,rl,r2 ; Subtract; r5 =r1-r2
mul ré,r1,r2 ; Multiply
movr7,ré 00000000
. . .
addr7,#2 ; Add immediate data R 000000000
R12 0x00000000 ~
mov r8,r7 . . F13[5F) Q00000000
sub r8,#3 ; Subtract immediate data R14(LR] 0x00000000
mov r9,r8 . [
+ SPSH (=00000000
stop b stop

Dept. of AD, CIT, Gubbi- 572 216

Page No. - 16 -

21C543, MES-LAB

end

3. Logical operations : To perform AND, Logical Shift operations,
area dis,code,readonly

entr Registers w O X
y _
mov r0,#0x83 Register Yalue I_
110 =l Current
movrl.r . ‘ RO 040000002
and r1, # 0Xf0 ; Perform Logical AND operation
mov r2,rl _
Isrr2, #4 ; Perform Logical right Shift operation e oL0000000
mov r3, 10 A5 0x00000000
and r3, # 0XO0f & 0x00000000
and r1.10 R7 0x00000000
’ . . RE 0x00000000
orrr2,rl ; Loglcal QR Qperatlon . N ng 000000000
Isr 12, #3 ; Logical shift right r2 by 3 bit positions Ri0 000000000
R 0x00000000
Riz 0x00000000
stop b sto
P P R13(5F) 0x00000000
end R4 (LR) 0%00000000
R15[PC)
+- PSR 0x000000d3
- SPSR 0x00000000

Write an ALP using ARM to execute the following instructions

e ADDr1, rO, rO, LSL #3
;1 =10 +r0<<3=r0+8xr1r0

« ADDr1, r0, rO, LSR #3
;11 =10+ 1r0>>3=r0+r0/8 (unsigned)

e ADDr1,r0, r0, ASR #3
;11 =10 + 10 >> 3 =10 + r0/8 (signed)

The state of the system after loading the code for Program 1

v The semicolon indicates a user-supplied comment.

v Anything following a semicolon on the same line is ignored by the
assembler.

v The first line is AREA Examplel, CODE, READONLY is an
assembler directive and is required to set up the program. It is a
feature of the development system and not the ARM assembly
language.

v An assembler from a different company may have a different way of
defining the start of a program. In this case, AREA refers to the
segment of code, Examplel is the name we’ve given it, CODE
indicates executable code rather than data, and READONLY state
that it cannot be modified at run time.

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 17 -

21CS543, MES-LAB

v Anything starting in column 1 (in this case Stop) is a label that can
be used to refer to that line.

v The instruction Stop B Stop means ‘Branch to the line labeled
Stop’ and is used to create an infinite loop. This is a convenient
way of ending programs in simple examples like these.

v The last line END is an assemble directive that tells the assembler
there is not more code to follow. It ends the program.

Graded ARM assembly language Examples

ADDITION

The problem: P=Q + R+ S
LetQ=2,R=4,S=5. Assume thatrl = Q, r2 =R, r3 =S. The result Q
will go in rO.

The Code

ADD rO,r1,r2 ;add Q to R and putin P
ADD r0,r0,r3 ;add S to P and put the result in P

The program

AREA Examplel, CODE, READONLY
ADD rO,r1,r2

ADD rO,r3

Stop B Stop

END

Notes:

The semicolon indicates a user-supplied comment. Anything following a
semicolon on the same line is ignored by the assembler.

The first line is AREA Examplel, CODE, READONLY is an assembler directive
and is required to set up the program. It is a feature of the development system
and not the ARM assembly language. An assembler from a different company
may have a different way of defining the start of a program. In this case, AREA
refers to the segment of code, Examplel is the name we’ve given it, CODE
indicates executable code rather than data, and READONLYstate that it cannot
be modified at run time.

Anything starting in column 1 (in this case Stop) is a label that can be used to
refer to that line.

The instruction Stop B Stop means ‘Branch to the line labelled Stop’ and is
used to create an infinite loop. This is a convenient way of ending programs in
simple examples like these.

The last line ENDis an assemble directive that tells the assembler there is not
more code to follow. It ends the program.

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 18 -

21CS543, MES-LAB

|E| E:\CengageEdition_2\Structured ARMexamples\Examplel_ADDITIC =10l x|
File Edit View Project Flash Debug Peripherals Tools 35VCS Window Help
RI=1" - Y= == E |
HEO BFon > JRBEEGE- O Z-8- @@ -
|Registers a XHDisassembly a Xl
T [Value [« 2: ADD 10,11,I2 ﬂ
S Current Ox00000000 EOB10002 ADD RO,R1,R2
_______ RO 00000008 3: ADD rO,r3
f=)
_______ R1 00000002 O=x00000004 EOB00003 ADD RO,RO,R3
------- R2 (00000004 4: Stop B Stop
f=) f=1
_______ R 00000005 O0=x00000008 EAFFFFFE B Ox00000008
_______ R4 00000000 O=x0000000C O0QO0QD0OOD0OD ANDEQ RD,ROD,RO
_______ =1 00000000 0=x00000010 O0QOOQD0DODD ANDEQ RD,ROD,RO
_______ RE 00000000 — 0=x00000014 O0QOOQDOODOD ANDEQ RD,ROD,RO
_______ = 00000000 Ox00000018 O0QO0QD0ODOD ANDED RD,RO,RO _Ij
1 >
"""" RB ChDO000000
"""" R3 00000000 [] Examplel_ADDITION.s v X
"""" R10 (00000000 AREA Examplel, CODE, READONLY =
"""" R11 ChDO000000 ADD rO,rl,r2 -
"""" R12 ChDO000000 ADD r0O,r3
"""" R13(5F) ChDO000000 Ftop B stop -

------- RI4(LA) (x00000000 = END -
I£] Project | 5 Registers 1 r

| | +

Figure Example 1.1 The state of the system after loading the code for Example 1

Note that the contents of r) are 2 + 4 + 5 = 11 = 0x0B. This is the result we expected.

Example 2 ADDITION

This problem is the same as Example 1.P=Q + R+ S

Once again,let Q =2, R=4,S=5and assumerl =Q,r2 =R, r3=S.In
this case, we will put the data in memory in the form of constants before
the program runs.

The Code

MOV r1,#Q ;load Q into ri1

MOV r2,#R ;load R into r2

MOV r3,#S ;load S into r3

ADDrO,r1,r2;Add Q to R

ADD r0,r0,r3 ;Add S to (Q + R)

Here we use the instruction MOV that copies a value into a register. The
value may be the contents of another register or a literal. The literal is
denoted by the # symbol.

We can write, for example, MOV r7,r0, MOV r1,#25 or MOV r5,#Time

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 19 -

21CS543, MES-LAB

We have used symbolic names Q, R and S. We have to relate these
names to actual values. We do this with the EQU (equate) assembler
directive; for example,

Q EQU 2

Relates the name Q to the value 5. If the programmer uses Q in an
expression, it is exactly the same as writing 2. The

purpose of using Q rather than 2 is to make the program more readable.
The program

AREA Example2, CODE, READONLY

MOV r1,#Q ;load r1 with the constant Q

MOV r2,#R

MOV r3,#S

ADD rO,r1,r2

ADD r0,r0,r3

Stop B Stop

Q EQU 2 ;Equate the symbolic name Q to the value 2

R EQU 4 ;

SEQU 5;

END

Example 3 ADDITION

The problem once againis P=Q + R + S. As before, Q =2, R=4,S=5
and we assume thatrl = Q,r2 =R, r3 =S.

In this case, we will put the data in memory as constants before the
program runs. We first use the load register,

LDR r1,Q instruction to load register r1 with the contents of memory
location Q. This instruction does not exist and is not part of the ARM’s
instruction set. However, the ARM assembler automatically changes it
into an actual instruction.

We call LDR r1,Q a pseudoinstruction because it behaves like a real
instruction. It is indented to make the life of a programmer happier by
providing a shortcut.

The Code

LDR r1,Q ;load r1 with Q

LDR r2,R ;load r2 with R

LDR r3,S ;load r3 with S

ADD rO,r1,r2 ;add Q to R

ADD r0,r0,r3 ;add in S

STR r0,Q ;store result in Q

The program

AREA Example3, CODE, READWRITE

LDR r1,Q ;load r1 with Q

LDR r2,R ;load r2 with R

LDR r3,S ;load r3 with S

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 20 -

21CS543, MES-LAB

ADD rO,r1,r2 ;add Qto R

ADD rO,r3 ;add in S

STR r0,Q ;store result in Q

Stop B Stop

AREA Example3, CODE, READWRITE

P SPACE 4 ;save one word of storage

Q DCD 2 ;create variable Q with initial value 2

R DCD 4 ;create variable R with initial value 4

S DCD 5 ;create variable S with initial value 5

END

Note how we have to create a data area at the end of the program. We
have reserved spaces for P, Q, R, and S. We use the SPACE directive for S
to reserve 4 bytes of memory space for the variable S. After that we
reserve space for Q, R, and S. In each case we use a DCD assembler
directive to reserve a word location (4 bytes) and to initialize it. For
example,

Q DCD 2 ;create variable Q with initial value 2 means ‘call the current
line Q and store the word 0x00000002 at that location.

Figure Example 3.1 shows the state of the program after it has been
loaded. In this case we've used the view memory command to show the
memory space. We have highlighted the three constants that have been pre-
loaded into memory.

Take a look at the disassembled code. The pseudoinstruction LDR r1,Q
was actually translated into the real ARM instruction LDR
r1,[PC,#0x0018]. This is still a load instruction but the addressing mode
is register indirect. In this case, the address is the contents of the
program counter, PC, plus the hexadecimal offset 0x18. Note also that
the program counter is always 8 bytes beyond the address of the current
instruction. This is a feature of the ARM'’s pipeline.

Consequently, the address of the operand is [PC] + 0x18 + 8 =0+ 18 + 8
= 0x20.

If you look at the memory display area you will find that the contents of
0x20 are indeed 0x00000002.

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 21 -

21CS43, MES-LAB

W] E:\CengageEdition_2\StructuredARMexamples \Example3_ADDITIONb.uvproj - pVisiond o =] 4 |
Flls Edit View Project Flash Debug Peripherals Tools SV¥CS Window Help
DS o - vz i | 2 5 & e &
I ES aro 0 > oRsEREA- 2~ oM - GO - - b
Reagisters @ x| [Disassembly n x|
Register I alkies I 2 LDR i1, @ ;load rl with @ il
= $0x00000000 ES9F1018 LDR R1, [FPC, #0x0018]
RO B<0DODD00D 3: LDR r2,R sload r2 with R
R1 EkDDDDDDm} Ox00000004% E59F2018 LDR R2, [PC, #0x0018]
R2 BOODO000 a: LDR 3,5 ;load r3 with S
Ra 000000000 Ox00000008 ES9F3018 LDR R3, [PC, #0x0018]
R4 300000000 S: ADD x0, rl,x2 ;sadd @ te R
RS 00000000 Ox0000000C EQ810002 ADD RO,R1,R2
RE OxDDODDD0D 6: ADD ro,r3 sada in S
R7 0DO0D000 Ox00000010 EQ800003 ADD RO,RO,R3 Th d
RS 000000000 T2 STR r0,Q ;store result in @ € coae
0x00000014 ES8F0004 STR RO, [PC, $0x0004]
e et 8: Step B stop generated by the
R11 00000000 Ox00000018 EAFFFFFE B ©0x00000018
R12 O 0DDODDDOD 0x0000001C 00000000 ANDEQ RO,RO, RO -
R13 (SP) 000000000 LLl_ o i |]
R14 (LR) 00000000 1 Exam - x
R15 (PC) 0x00000000 3| ¥
& CPSR x000000D 3 01 ARERA Example3, CCODE, READWRITE Ty
B SPSR 000000000 =02 BT rA AL
) User/System 03 LoW 2R
- Fast Intemupt o4 LDR r3,s
B Intermupt 085 ADD rO,Tl, T2
B Supervisor 08 ADD 1O, T3
Bl Abort a7 STR ro,qg o
B Undefined LHiESTon B Scon
= Intemal o
PC 00000000 19 AsEN
Mods Supervisor i SPACE 4
Oedmn 5 12 q DcC 2 5
Sec 0.00000000 =R Lo ¥ 4
14 S DCD s ;e te x Cr nit X y 5
15 END -
=] Project | &S Registers [l 1 3
| Memory 1 n x|

Address: [0 Elil
ES 9F 10 18 ES5 9F 20 18 ES5 SF 30 18 EC 81 00 02 EO 80 00 03 ES 8F 00 04 EA FF FF FE
00 00 o0 ([T SEEmEEo0C 00 OO0 00 00 00 00 00 00 OO0 00 00

PO C s 00 00 000 00 00 00 00 00 00 OOPO 00 00 00 00 00 00 00 00 00 00 Q0 00 00 0o oo =i
Stack = Lacals |] Mapfory 1
[I[simu]

The address of the first data These are the three data values
element on this line is we’ve stored in memory at
0x0000001C. The first locations

0x00000020

Figure The state of the system after loading the program

Example 4 ADDITION

The problem P = Q + R + S where Q = 2, R =4, S = 5. In this case we are
going to use register indirect addressing to access the variables. That is,
we have to set up a pointer to the variables and access them via this
pointer.

The Code

ADR r4,TheData ;r4 points to the data area

LDR r1,[r4,#Q] ;load Q into r1

LDR r2,[r4,#R] ;load R into r2

LDR r3,[r4,#S] ;load S into r3

ADDrO,r1,r2 ;add Q and R

ADD r0,r0,r3 ;add S to the total

STR r0,[r4,#P] ;save the result in memory

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 22 -

21CS543, MES-LAB

The program

AREA Example4, CODE, READWRITE

ENTRY

ADR r4,TheData ;r4 points to the data area

LDR r1,[r4,#Q] ;load Q into r1

LDR r2,[r4,#R] ;load R into r2

LDR r3,[r4,#S] ;load S into r3

ADD rO,r1,r2 ;add Q and R

ADD r0,rO,r3 ;add S to the total

STR r0,[r4,#P] ;save the result in memory

Stop B Stop

P EQU O ;offset for P

Q EQU 4 ;offset for Q

R EQU 8 ;offset for R

S EQU 12 ;offset for S

AREA Example4, CODE, READWRITE

TheData SPACE 4 ;save one word of storage for P

DCD 2 ;create variable Q with initial value 2

DCD 4 ;create variable R with initial value 4

DCD 5 ;create variable S with initial value 5

END

Figure Example 4.1 shows the state of the system after the program has
been loaded. I have to admit, that I would not write this code as it is
presented. It is far too verbose. However, it does illustrate several
concepts.

First, the instruction ADR r4,TheData loads the address of the data
region (that we have labelled TheData into register r4. That is, r4 is
pointing at the data area. If you look at the code, we have reserved four
bytes for P and then have loaded the values for Q, R and S into
consecutive word location. Note that we have not labelled any of these
locations.

The instruction ADR (load an address into a register) is a
pseudoinstruction. If you look at the actual disassembled code in Figure
Example 4.1 you will see that this instruction is translated into ADD
r4,pc,#0x18. Instead of loading the actual address of TheData into r4 it
is loading the PC plus an offset that will give the appropriate value.
Fortunately, programmers can sleep soundly without worrying about
how the ARM is going to translate an ADR into actual code - that’s the
beauty of pseudoinstructions.

When we load Q into r1 we use LDR r1,[r4,#Q]. This is an ARM load
register instruction with a literal offset; that is, Q. If you look at the EQU
region, Q is equated to 4 and therefore register r1 is loaded with the data
value that is 4 bytes on from where r4 is pointing. This location is, of
course, where the data corresponding to Q has been stored.

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 23 -

21C543, MES-LAB

Figure Example 4.1 The state of the system after loading the program

e Edit View Project Flash Debug Peripherals Tools 3VCS

Window Help

DEHa|: o EENIEEY A o ° |
FEEIERIERERE g-m-a-@- -] |
Registars. o X\ Disassembly o x\
Register |V‘a\ua | EH ADR x4, TheData :r4 points to the datsz area ﬁ
= G C>0x00000000 E28F4018 ADD R4, PC, #0x00000018
RO 00000000 4z LODR x1, [z4,.#Q] ;load @ into rl
R 300000000 0x00000004 ES941004 LDR R1, [Rq,#oxogoq]
A2 00000000 5 LDR 2, [z4,%R] ;load R into &2
R3 00000000 0x00000008 ES5942008 1DR RZ, [R4,#Ox()(_)03]
- R4 00000000 a: LDR 3, [r4,%3] ;load 5 into r3
. RE 00000000 0x0000000C E594300C LDR R3, [R4, #0x000C]
RE 500000000 T: ADD r0,rl,r2 jadd @ and R
- A7 00000000 0x00000010 EOQS10002 &ADD RO,R1,R2
- RB 00000000 g ADD z0,r0,x2 sadd S to the total
RS 00000000 0x00000014 E0800003 ADD RO,RO,R3)
R0 00000000 a: S5TR x0, [r4,#P] ;save the result in memory
-~ R1 30000000 000000018 ES840000 SIR RO, [R4]
R12 00000000 10: Stop B Stop
R13(5P) 100000000 0x0000001C EAFFFFFE B 0x0000001C
R14 (LR) BO0000000 0x00000020 00000000 ANDEQ RO,RO,RO
- RI5(FC) 00000000 0x00000024 00000002 ZANDEQ RO, RO, R2
- CPSR 00000003 0x00000028 00000004 INDEQ RO,RO,R4
[PSR BO0000000 0x0000002C 00000005 AMDEQ RO,RO,RE —ILI
User/System ﬂ_l L
Fast Intemupt
Interrupt B] Eoz=is v X
Supervisor o AREA Exampled, CODE, READWRITE =
Abort 02 EMTRY =
Undefined o 03 ADR r4,Thelata ;r4 points to the data area
- Intermal 04 DR ri, [r4,#Q]
L BC g 00000000 05 1DR T2, [r4,$R]
 Mode Supervisor 08 DR 13, [r4,#5]
- Ctates o7 ADD 0, rl, r2
- Sec 0.00000000 0 ADD x0, 10,73
09 STR 0, [rd, $F] memory
10 Stop B Stop
1
e EQU 2] :offset for P
13 Q EQU 4 ;oLLset for Qg
14 R EQU 8 soffset for R
1hES EQU 1z ;offset for §
16
17 AREL Example4, CODE, READWRITE
18 TheData SERCE 4 ;save one vord of stora
19 DcD 2 i 2
20 DcC 4 4
21 DCC 5 5 b
2 END
[ElProject | ERegisters k!
Memory 1
Address: |0
0x00000000: E2 BF 40 18 ES5 94 10 04 E5 94 20 08 E5 94 30 OC EQ 81 00 02 EQ 80 00 03 E5 84 00 00 EA FF
0x0000001F: FE 00 00 00 00 OO0 00 OO 02 00 00 00 04 00 00 OO 05 00 ©O 00 OO 00 OO OO0 OO0 OO OO OO0 OO 00
0x000Q0003E;: 00 00 00 00 Q0 00 00 Q0 00 00 00 00 QOO QO 00 QO 00 00 Q0 00 00 00 OO0 Q0 00 OO 00 00 QO QO
ALANANRAER. AR AN AN AR AR AR AN AR AR AN AR A AR AN AN AR NA RN AN AN AN OR AR AR AR AR

An_om_nn_non
J Memory 1

&1 Call Stack = Losals

[|[Smuation | -

Figure Example 4.2 The state of the system after executing the program

Dept. of AD, CIT, Gubbi- 572 216

Page No. - 24 -

21CS543, MES-LAB

_EI E:\Cengagekdition_2\StructuredARMexamples\ Exampled_ADDITIONc.uvproj - pVisiond

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

Hal=1"1-.

= I | AR

i B0 woeo v v DBEERa[0]3-=- 9-@8- &-

7 % || Disassembly

Registers 2 x|
Register |v5\ue | 3: ADR r4,TheData :rd4 points to the data area -]
Y 0x00000000 EZ28F2018 ADD R4, EC, $0x00000018
- RD 00000008 4a: LDR 1, [r4,#Q] :load Q into rl
R B00000002 0200000004 £594100¢ LIR R1, [Re,#0x0004]
R2 00000004 5: LDR rZ, [r4,7R] :load R into 12
R3 00000005 0x00000008 E5942008 LDR R2, [Rd, $0x0008]
e RA BO0000020 6: LDR 13, [r4,#3] :load S into r3
RS 00000000 0x0000000C ES594300C LDR B3, [R4,#0x000C)
e 00000000 T ADD x0,rl,x2 radd Q and R
s 00000000 0200000010 E0210002 ADD RO, R1, R2
- R8 00000000 8: ADD 10, x0,xr3 ;=dd 5 to the total
RO BO0000000 ox00000014 E0200003 ADD ~ RO,RO,R3)
- R10 00000000 9: STR 0, [r4, #P] :save the result in memory
Ri1 00000000 ox00000018 ES840000 STR RO, [R4]
Rz 00000000 10: Stop B stop
Rie oumam |oroceolc mrmm v oo
-~ R14 (LR} (xD0000000 i
0x00000024 00000002 ANDEQ RO, RO, R2
H CPR 00000003, 0x00000028 00000004 ANDEQ RO, RO, R4
51 8PSR SO000000 0x0000002C 00000005 ANDEQ RO, RO, RS A'EI
- User/System L<11 L]
- o et Exampled.s v %
- Supervisor ifl LRER Ewxampled, CODE, READWRITE =
- Abort 0z ENTRY =
- Undefined | ADR rt4,TheData
|- Intemial 04 LDR rl,[r4,3Q]
PCs 0000001C 05 LDR r2,[r4, $R]
- Mode Supervisor 05 LDR 3, [r4,45]
i Giates 14 o7 ADD r0,rl, T2
[0.00000000 08 ADD T0,r0,T3
09 STR r0,[r4,#P] ;ssve the result in memory
5210 Stop B Stop
n
2.F EQU 0
124 EQU 4
14 R EQU 8
15 5 EQU 12
16
17 ARER Example4, CODE, READWRITE
18 TheData SPACE 4 rsave ons word of
19 Dcc 2
i Dco 4
2 DCh S
2 END
[l Project | E Registars 1
Memory 1
Address: [0
0x0D0000000: E2 8F 40 18 ES 94 10 04 ES 94 20 08 E5 99 30 OC EO &1 00D 02 EO 80 00 03 E5 83 00 00 EA FF FF
0x0000001F: FE 00 00 00 OB 00 00 00 02 00 00 00 04 00 00 00 05 00 00 00 00 00 00 00 0O GO0 00 00 00 00 00
0x0000003E: 00 Q0 0O G0 00 00 00 00 00
£YARMARASR. A7 AR AM AN AA_AA AA AN AR AR AN MM AR AR AM AA AA AN AR AR AN AN AR AA AA AR AR AA AR am A T

i Call Stack + Locals | [E] Memory 1

|[simulation | 4

Example 5 ADDITION

We're going to repeat the same example once again. This time we will

write the program in a more compact fashion,

still using the ADR (load register with address instruction).

To simplify the code, we've used simple numeric offsets (because there is

relatively little data and the user comments

tell us what’s happening. Note that we have used labels Q, R, and S for

the data. These labels are redundant and are not

needed since they are not referred to anywhere else in the program.

There’s nothing wrong with this. These labels just
serve as a reminder to the programmer.

AREA Example5, CODE, READWRITE

ENTRY

ADR rO,P ;r4 points to the data area

LDR r1,[r0,#4] ;load Q into r1l

LDR r2,[r0,#8] ;load R into r2

Dept. of AD, CIT, Gubbi- 572 216

Page No. - 25 -

21C543, MES-LAB

ADD r2,r1,r2 ;add Q and R

LDR r1,[r0,#12] ;load S into r3

ADDr2,r2,r1 ;add S to the total

STR r1,[r2] ;save the result in memory

Stop B Stop

AREA Example5, CODE, READWRITE

P SPACE 4 ;save one word of storage for P

Q DCD 2 ;create variable Q with initial value 2

R DCD 4 ;create variable R with initial value 4

S DCD 5 ;create variable S with initial value 5

END

Note also that we have reused registers to avoid taking up so many. This
example uses only r0, r1, and r2. Once a register has been used (and its
value plays no further part in a program, it can be reused. However, this
can make debugging harder. In this example at one point r1 contains Q
and at another point it contains S. Finally, it contains the result S.
Figure Example 5.1 gives a snapshot of the system after the program has
been loaded, and Figure Example 5.2 shows the state after the program
has been executed.

Figure Example 5.1 The state of the system before executing the
program

(W] F:\CengageFdition_3\Structured ARMexamples\ExampleS_ADDITIONd.uvproj - piisiond E —ioil x|

_Ede fdw yiew projest Fiash Debug Perpherats Iool
I o Sa[o

1 e] e
I Eo Heo vl v o sEsDe -[m
Reginters 5 5| [Disassembly a x|
Register Valus 3 Ann i
e e ||gsoxoooc0o0e E2sFco1s =
a: LDR
Ao 000000000 | 0002000s mss0io0a
R2 00000000 Be s
5] e oxooooooos Essozoos
R4 00000000 i R0
e 0500000 oxooo0DOOC EOE12002
RE 00000000 i LB
i e roriog. 0%00000010 E890100C
RE 0200000000 gt i)
A9 5-00000000 omooooooia Eosz2o01
R10 300000000 a:t IR
Al 0000000 oxooooooia Esecioos
o 209000000 || owonzasoic Earrrrrs
:EE:; e ox00000020 0000QD0Q
R18 00 oxoocoo024 0ooo0GoOZ
el o st 0%00000028 00000004 3
Biiapen sl 0X0000002C 00000008 LROLRS -
- User/System R B e B RoERS >
1 Fast Intemapt
[Intermpt [#] Examples_ADDITION.s - x
1 Superviser ol ARER Ewamples, GODE, READWRITE =
1 Abort uz ENTRY
1 Uindefined 03 anr s
1 Intemal 04 LoR
PC 5 00000000 05 LDR
Mode Superviaor o5 DD
States o o7 LDR
Sec 000000000 08 ADD
03 STR ry
10 secep B

CET]

x|
[

0x00000000: E2 8F 00 18 E5 90 10 04 E5 90 20 08 EQ 81 20 02 E5 90 10 OC EO 32 20 01 E5 80 10 00 EA FF FF

0x0DD00DD1F: FE 00 0O DO QD 00D 00 0O D2 QD 00D OO0 D4 DO GO GG O5 DO DO GD GO 00 DO DD GO 0O 00 DO DO QO 00
0x0000003E: 00 00 00 00 00 00 00 00 00 G0 00 OO0 00 00 G0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

5 Call Stack - Locals | [Memory 1

| Eimistion]

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 26 -

21C543, MES-LAB

Figure Example 5.2 The state of the system after

\CengageEdition_2\Structured ARMexamples\Example5 ADDITIONd.uvproj - pVisiond
SVCS Window Help

File Edit View Project Flash Debug Peripherals Tools

executing the program

DEHd| 2 -

i

/S

] el

RO Bre o v ORBER

-®-3-E- x|

|Regisiels a X||Di;asselnhly 1 X|
Register I\«’a]ue 3: ADR rd, P :r4 points to the data area ﬂ
0x00000000 EZ28F0018 ADD RO, PC, #0x00000018
00000020 Ll LDR rl, [x0, #4] :load @ into rl
0000005 0x00000004 ESS01004 LDR R1, [RO, #0x0004]
000000003 5 LDR r2, [z0,#8] ;load R into r2
00000000 0x00000008 ESS02008 LDR R2, [RO, #0xX0008]
300000000 6 ADD r2,rl, r2 sadd Q and R
00000000 0x0000000C EOQ812002 ADD RZ2.R1,RZ
500000000 #13 LDR rl,;[r0;312] load 5 Anto:r3
500000000 0x00000010 ESS0100C LDR Rl, [RO, #0x000C]
00000000 8: ADD EZird ol sadd 5 to the total
00000000 0x00000014 EOB822001 ADD R2,R2,R1 :
"""" b SN0 Oxoooz(:)ms Esaoizﬁo ;r‘a[m] R1 ;[:;TE E—
....... R 00000000 .
_______ R12 00000000 10: Stop B Stop
_______ R1315P) TR Floxcoo00001C ERFFFFFE B 0x0000001C
R14 (LR} B00000000 0x00000020 00000005 RNDEQ RO,.RO,RS
_______ R15{PC) 0000001 0x00000024 00000002 AMNDEQ RO,RO,RZ
- CPSR 500000003 0x00000028 00000004 ANDEQ RO,RO,R4
ot N T spetion s Boniini Mene S _Iﬂ
¥
Example5_ADDITION.s - X
AREAR Example5, CODE, READWRITE =
ENTRY =
ADR r0d, P FE
LDR rl, [r0, #4] 1o
0000001C 05 LDR r2, [r0, #8] Xo ko
Supervisor 03} ADD 3 con S h B o radd d R
17 0 LDR rl,[r0,#12] :load & into r3
0.00000000 03 ADD r2,r2, rl sadd S to the total
09 STR rl, [rO] ;save the resulft 1n memory
10 Stop B Stop
1
12 AREA Example>, CODE, READWRITE
13- F SPACE 4 ;save on= word of storage for P
14 Q DCD 2 ;soreate variable Q with initial valmpe 2
15 R DCOD ;screate variable R with initial valwme 4
16 5 DCD 5 screate variable § with initial wvalwe § ==
17 EHD -
—— 1
[E Project | £ Registers Ji'q_l _’I—I
|Mem0qr1
Address: [0
0x00000000: E2 8F 00 18 ES 90 10 04 ES 90 20 08 EQ 81 20 02 ES 90 10 OC EQ 82 20 01 ES 80 10 00 EA FF FF
0x0000001F: FE 00 00 00 OS5 00 ©OC 0O 02 00 0O OO O4 OO 0O DO OS5 00 0O OO OO 00 OO0 00 OO 0O QO OO 0O 0O 00
0x0000003E: 00 00 00O 00 00 00 ©O0 0O OO0 00 0O OO OO0 OO0 0O 0O OO0 OO0 0O 00 OO0 00 00 00 OO0 OO OO0 OO 00 00 00 j

1 Call Stack = Locals | [

| simulation | 4

Dept. of AD, CIT, Gubbi- 572 216

Page No. - 27 -

21CS43, MES-LAB

Program No .2 Date:
AIM: Write a program to find the sum of first 10 integer numbers.

AREA int, CODE, readonly

ENTRY

mov r5,#10

mov rO,#0

mov rl,#1
loop add r0,r0,r1

add r1,r1,#1

subs r5,r5,#1

cmp r5,#0

bne loop

ldr r4,=result

str r0,[r4]
stop b stop

AREA intl,data,readonly

result dcd 0x0

end
¥ fife.asm l A et
m AREL int, CODE, readonly
nz2 ENTREY
03 mov r5,H10
14 mov r0,#0
05 movr ril,H1
0§ loop add r0,r0,rl
i add ri1,r1,#1
na subs ri,r5, #1
09 cmp r5, #0
10 bne loop
11 ldr rd,=result
12 str r0, [r4d]
13 =stop b =stop
14 AREL intl,data,readonly
15 result ded O0x0
16 end *—SPSR 00000000
17 = Usges/System

= Fazt Inteenupt -

- T _

Result: 1+2+3+4+5+6+7+8+9+10= 55 in decimal
The Hexa value of 55 is 37 is stored in RO Register.

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 28 -

21CS43, MES-LAB

Program No .3

Date:

AIM: Write a program to find factorial of a number.

AREA factorial, CODE, readonly

ENTRY

MOV RO,#1 ;int ¢ =1

MOV R1.#5 ;int fact=3

MOV R3.#1 ;int n=1
BL loop
B STOP
loop
MUL R4,R3,R0
MOV R3,R4
ADD RO,RO,#1
CMP RO,R1
BLE loop
MOV PC,LR
STOP B STOP
END

OR

area fact,code,readonly
entry

mov r0,#4

movrl,#01

back mul r2,r0,r1

mov ril,r2
subs r0,r0,#01
cmp rO0,#00
bne back

stop b stop

end

The final result will be available in R1 register, It will be in Hexadecimal value eg:
The data given hers is 5: Factorial is 5¥4%3%2%1= 120d, But result in R1 will be 78,

which is the hexadecimal value of 120.

For 4; 24 is Decimal and 18 in Hexa as shown in below output of Register R1.

Reqgister | Yalue I_‘

/ ml.asm l
m area fact,code,readonly
nz2 ENLYY
03 movr r0,#d
4 mor rl1,#01
05 back mul r2,r0,rl
06 movr rl,r2
i gubs r0,r0,#01
0a cmp r0,#00
09 bne back
10 =stop b =top
11 end
12

=l Current
R0

R3

R4 (=000000a0
RS (0x00000000
RE (=000000a0
R¥ (0x00000000
Ra (=000000a0
R3 (0x00000000
R10 (=000000a0
R11 (0x00000000
R12 (=000000a0 o
R13(5F) (0x00000000

R14 [LR]
R15[PC]
L3RS CPSH
+- 5PSH
|Jzer/Syztem

-+ C—rk Limbmrrn ek -

Dept. of AD, CIT, Gubbi- 572 216

Page No. - 29 -

21CS43, MES-LAB

Program No. 4

Date:

Aim: Write a program to add an array of 16 bit numbers and store
the 32 bit result in internal RAM

AREA PROG, CODE, READONLY

AREL PROG, CODE, READONLY
ENTRY ENTRY
MOV RO, #04 MOV RO, #04
mov rl, #00 movr rl, #O0O
movr r2, #0x40000000
mov r2, #0x40000000 mov 3. §0x40000010
mov r3, #0x40000010 loop ldrh rd, [r2]
loop ldrh r4,[r2] add ri,r4,rl
add r1’r4,r1 suhs ro0,r0,#01
subs r0,r0,#01 add r2, 52
bne loop
add r2,#2 str rl, [r3]
bne 100p Iatn:up b =stop
strrl, [r3] end
stop b stop
end
Memory 2 * 0 X
.S
Address: | 040000000 D
0x40000000: 11 22 33 44 55 g6 77 S5 00 00 00 00 00 0O 0O OO
0x40000010: 10 55 01 00 00 00 OO0 00 00 00 00 00 00 00 00 o0
0x40000020: 00 OO0 OO0 00 00 00 OO0 00 00 00 00 00 00 00 00 o0
0x40000030: 00 00 OO0 00 00 00 OO0 00 00 00 00 00 00 00 00 o0
0x40000040: 00 OO OO0 00 OO0 00 OO0 00 00 00 00 00 00 00 00 o0
0x40000050: 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 o0
0x40000060: 00 OO0 OO0 00 OO0 OO0 OO0 00 00 00 00 00 00 00 00 o0
0x40000070: 00 OO0 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 s
Result:
2211
+ 4433
+ 6655
+ 8877

00|01/55/10 «—

Perform Hexa addition:

Result: Result will be stored from this side

Look for the results in location 0x40000010.

Dept. of AD, CIT, Gubbi- 572 216

Page No. - 30 -

21C543, MES-LAB

Program No. 5 Date:

Aim: Write a program to find the square of a number (1 to 10) using

look-up table.

area sdquare, code, readonly

area square, code, readonly JE_EEEE,];:tablel

entry 1dr rl, =5

1dr rO,=tablel sub rl, #i1

Idr r1, =5 add r0,rl

subri, #1 Smplgrzt;i: [r0]

add rO,r‘l area datal, data, readonly

ldrb r2, [rO] tablel deb 01,04,09,16,25,56,49, 64,81, 100
stop b stop end

area datal, data, readonly
tablel dcb 01,04,09,16,25,36,49,64,81,100
end

Result:

Reqgister Walue

Current

[N

R4 Q00000000
R& Q00000000
R& Q00000000
RY O=00000000
Ra Q00000000
R3 O=00000000
R10 Q00000000
R11 O=00000000
Ri12 Q00000000
R13[5P] O=00000000
FR14 [LR] Q00000000
R15 [PC]

+- CPSH Q00000043

+- SP5R Q00000000
H U gers/System
*- Fast Inteript

EPr-:ject |§Registers |

Result: The given number is 5, Square of 5 is 25 in decimal, It is 18
in Hexa, The value 18 is found in R2.

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 31 -

21C543, MES-LAB

Program No. 6 Date:

AIM: Write a program to find the largest/smallest number in an
array of 32 bit numbers.

AREA PROG, CODE, READONLY
ENTRY
ldr rO,= datal
Idr r3,=0x40000000
Idr r4, = 0x05
Idr r1, [r0],#04
sub r4,r4,#01
back Idr r2, [r0]
cmp rl,r2
bhs/blo less
mov rl,r2
less add rO,r0,#04
sub r4,r4,#01
cmp r4,#00
bne back
str r1,[r3]
stop b stop
area data, code
; datal dcd &64,&05,&96,&10,&65 ; (Either Data can be given in
this format or as shown in the next line)
datal dcd 0x70000000,0x80000000,0x90000000,0x10000000,0x50000000
end

RESULTS:

LOWEST VALUE 0x10000000{BLO} IS STORED AS SHOWN BELOW
Memory 1

Address: |0x40000000

Ox40000000: 00 Q0 00 10 00 00 00 00 a0 00 0o o0 0o oc
0x40000010: 00 00 00 00 00 00 00 00 a0 00 0o o0 0o oc

HISHEST VALUE 0x9000000{BHS} IS STORED AS SHOWN BELOW

Memory 1

Addresz: (040000000

Ox40000000: 00 00 00 20 00 00 00 00 00 oo oo 00 oo oo
Ox40000010: 00 00 00 00 00 00 00 00 00 oo oo 00 oo oo

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 32 -

21CS543, MES-LAB

Program No. 7 Date:

AIM: Write a program to arrange a series of 32 bit numbers in
ascending/descending order.

;/* PROGRAM TO sort in Descending order */

;/* ARRAY OF 4 NUMBERS 0X44444444
*/,0X11111111,0X33333333,0X22222222 */

;/* SET A BREAKPOINT AT START1 LABLE & RUN THE PROGRAM*/
;/* CHECK THE UNSORTED NUMBERS AT LOCATION 0X40000000
NEXT */

;/* SET A BREAKPOINT AT NOP INSTRUCTION,RUN THE PROGRAM &
CHECK THE RESULT */

;/* RESULT CAN BE VIEWED AT LOCATION 0X40000000 */

AREA DESCENDING, CODE, READONLY

ENTRY ;Mark first instruction to execute
MOV RS8,#4 ; INTIALISE COUNTER TO 4(i.e. N=4)
LDR R2,=CVALUE ; ADDRESS OF CODE REGION
LDR R3,=DVALUE ; ADDRESS OF DATA REGION
LOOPO
LDR R1,[R2],#4 ; LOADING VALUES FROM CODE REGION
STR Rl,[RS],#4 ; STORING VALUES TO DATA REGION

SUBS R8,R8,#1 ; DECREMENT COUNTER

CMP R8,#0 ; COMPARE COUNTER TO O
BNE LOOPO ; LOOP BACK TILL ARRAY ENDS
START1 MOV R5,#3 ; INTIALISE COUNTER TO 3(i.e. N=4)

MOV R7,#0 ; FLAG TO DENOTE EXCHANGE HAS OCCURED
LDR R1,=DVALUE ; LOADS THE ADDRESS OF FIRST VALUE

LOOP LDR R2, [R1],#4 ; WORD ALIGN TO ARRAY ELEMENT
LDR R3,[R1] ; LOAD SECOND NUMBER
CMP R2Z,R3 ; COMPARE NUMBERS
BGT/BLT LOOP2 ; iF THE FIRST NUMBER IS > THEN GOTO LOOP2
STR R2,[R1],#-4 ; INTERCHANGE NUMBER R2 & R3

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 33 -

STR R3,[R1] ; INTERCHANGE NUMBER R2 & R3
MOV R7,#1 ; FLAG DENOTING EXCHANGE HAS TAKEN PLACE
ADD R1,#4 ; RESTORE THE PTR
LOOP2

SUBS R5,R5,#1 ; DECREMENT COUNTER
CMP R5,#0 ; COMPARE COUNTER TO O
BNE LOOP ; LOOP BACK TILL ARRAY ENDS
CMP R7,#0 ; COMPARING FLAG
BNE START1; IF FLAG IS NOT ZERO THEN GO TO START1 LOOP

NOP

NOP

NOP

; ARRAY OF 32 BIT NUMBERS(N=4) IN CODE REGION

CVALUE
DCD 0X44444444 ;
DCD 0X11111111 ;
DCD 0X33333333 ;
DCD 0X22222222 ;

AREA DATA1,DATA,READWRITE ;
; ARRAY OF 32 BIT NUMBERS IN DATA REGION

DVALUE
DCD 0X00000000 ;

END ; Mark end of file

DESCENDING ORDER OUTPUT

Address: |S:EI:-:4EIEIEIEIEIEIEI

Ox40000000: 44 44 44 44 33 33 33 33 22 ZZ 22 22 11 11
Ox40000010: 00 00 00 00 00 00 00 o0 00 00 oo oo oo o0

ASCENDING ORDER

OUTPUT:

Address: |S:EI:-:4EIEIEIEIEIEIEI D

Ox40000000: 11 11 11 11 22 22 22 Z:2 33 33 33 33 441 44 449 44
0x40000010: 00 00 o0 00 00 00 00 00 od o0 00 oo oo o0 oo oo

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 34 -

21C543, MES-LAB

Program No. 8

Date:

Aim: Write a program to count the number of ones and zeros in two

consecutive memory locations.

area datal, code, readonly
entry
mov r0, #0x40000000
mov r1,#02
mov r2,#00
mov r3,#00
mov r4,#08
ldrb r5,[r0]
tstr5,#01
beq inczero
add r2,#01
b loop
inczero add r3,#01
loop Isrr5,#01
subs r4,#01
cmp r4,#0
bne top
add r0,#1
subs r1,#01
cmp r1,#00
bne up
stop b stop
end

up

top

Memary 2

Address: |0=40000000

Ox40000000 @
0x40000010:
Ox40000020:
0x40000030:
Ox40000040 @
0x40000050:
Ox40000060 @
0x40000070:

36
oo
oo
oo
oo
oo
oo
oo

46
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo

Result:

The given data is 36 and 46:
0011 0110 0100 0110

There are 9 zeros stored in R3
stored in R2.

up

top

incEzero

loop

stop

oo
(]
oo
(]
oo
(]
oo
(]

oo
(]
oo
(]
oo
(]
oo
(]

oo
(]
oo
(]
oo
(]
oo
(]

oo
(]
oo
(]
oo
(]
oo
(]

oo
(]
oo
(]
oo
(]
oo
(]

and 7 ones

area datal,
ERErY
movr rQ, HOxd0000000
mov rl,#0:z
mov r2,HOO
movr r3,H#00
mov rd,HOS
1drh ri5,[rD]
tst rh,#H#01
bheg inczero
add r2,#01
b loop
add r3, #01
1sr ri,#01
subs r4,#01
cmp rd,#0
bne top
add ro, #1
subs ril,#01
omp rl,#00
bne up
h stop

end

code, readonly

Current

Ox40000002

0x00000000
0x00000007

R1

O=00000009

R4
RS
R
R7
R
R
R10
R
Ri2
Ri3(5F)
R14 (L)

Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000

+- SPSR
zer/Syztem
+ Fast Interupt

O=00000000

F

Bl Proiect IERFFIHTFI'*I |

Dept. of AD, CIT, Gubbi- 572 216

Page No. - 35 -

21CS543, MES-LAB
Program No. 09 Date:

Aim: Display “Hello World” message using Internal UART

PROGRAM:

#include <LPC21xx.H> /* LPC21xx definitions */
#include "Serial.h"
void delay_ms(int count)

{
int j=0,i=0;

for(j=0;j<count;j++)
{
for(i=0;i<35;i++);
}
}
int main (void)
{
uart0_init(); // Initialize UARTO
delay_ms(100000);

while (1)

{

uartO_puts ("\n\rHello World\n\r");
delay_ms(1000000);

}
} .
b+ Flash Magic - NON PRODUCTION USE ONLY:
File ISF Options
o5 20 . = 0o
LPC2148
i Flash Magic Terminal - COM3, 96
Terminal Settings E| Options
: Port and Speed Uutﬂm 3
COM Part: | COM3 N Baud Rate: | 9500 A

Hello World
Options Hello YWorld

[Modify default COM Part behavior:

[Use a delay character

Newlines: | CR + LF -

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 36 -

21CS43, MES-LAB

PART-B

Conduct the following experiments on an ARM7TDMI/LPC2148
evaluation board using evaluation version of Embedded 'C' & Keil
Uvision-4 tool/compiler.

Flash Magic Tool

To program the Microcontroller, Flash Magic tool is used. Generally, the
microcontroller is in one of the two modes. One is RUN mode and the
other is PROGRAMMING mode. In RUN mode microcontroller executes
the application present in the microcontroller flash memory. In
PROGRAMMING mode, microcontroller programs its flash memory in
synchronisation with Flash Magic.

To enter in to the programming mode, Hold down SW2(isp) and
SW3(reset), then release SW3 first and finally SW2 . To enter in to Run
Mode,press the SW3(reset) after programming is over.

Snapshot of the Flash Magic Tool.

“r.n Flash Magic - NOM PRODUCTION USE ONLY
File ISP ©Options Tools Help
GH QD@ > @ H @B

Step 1 - Communications Step 2 - Eraze

COM Part: |I:EIM 1 Erase block O [0x000000-0<000FFF)
Eraze block 1 [0x001000-0<001FFF)
Baud Hate: |'I 3200 Eraze block 2 [0x002000-0<002FFF)

: Erase block 3 [0x003000-02003FFF)
Device: |LPC2148 Erase block 4 [0x004000-0x004FFF]
it o |Nu:une (15F] Eraze block 5 [0x005000-0=005FFF)
. v Eraze all Flazh+Code Bd Prot

| O:cilator Freq. [MHz): |'I 2.00 [~ Eraze blocks used by Hex File

Step 3 - Hex File

Hex File: |C:ADocuments and SettingshrajusDeskiophsenal_driverssenalbes | Browse. .
todified: Monday, May 3, 2010, 1:27:17 PM more info

Step 4 - Dptions Step 5 - Start!

Iv “erfy after programming | Set Code Fead Prat
[Fill uruzed Flazh
[

[id you read the article "'Using Flash Memory in Ermbedded Applications''?

vy, ezacademy, com/fagddocs/flazh

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 37 -

21CS43, MES-LAB

Sample programs to demonstrate with the help of a suitable program

LPC2148 Led Blinking

This C program discusses how to configure the LPC2148 ports as GPIO
and then send a low/high signal on it.

The Below registers will be used for Configuring and using the GPIOs for
sending and receiving the Digital signals.

1. PINSEL: GPIO Pins Select Register

Almost all the LPC1768 pins are multiplexed to support more than 1
function. Every GPIO pin has a minimum of one function and max of
four functions. The required function can be selected by configuring the
PINSEL register.

2. I0ODIR: GPIO Direction Control Register.
This register individually controls the direction of each port pin.

[IOxDIR : This is the GPIO direction control register. Setting a bit to ‘0’ in
this register will configure the corresponding pin to be wused as input
while setting it to ‘1’ will configure it as output.

Values | Direction

0 Input

1 Output

3. IOSET:Port Output Set Register.

This register controls the state of output pins. Writing 1s produces highs
at the corresponding port pins. Writing Os has no effect. Reading this
register returns the current contents of the port output register, not the
physical port value.

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 38 -

21CS43, MES-LAB

IOXSET : This register can be used to drive an ‘output’ configured pin to
logic 1 i.e. HIGH. Writing zero does not have any effect and hence it can’t
be used to drive a pin to Logic 0i.e. LOW. For driving pins LOW I10xCLR
is used which is explained as below:

Values IOSET

0 No Effect

1 Sets High on
Pin

4. IOCLR:Port Output Clear Register.

[OxCLR:This register can be used to drive an ‘output’ configured pin to
logic 0 i.e. LOW. Writing zero does not have any effect and hence it can’t
be used to drive a pin to Logic 1.
This register controls the state of output pins. Writing 1s produces lows
at the corresponding port pins. Writing Os has no effect.

Values IOCLR

0 No Effect

1 Sets Low on
Pin

5. IOPIN: GPIO Port Pin Value Register.
This register is used for both reading and writing data from/to the PORT.
Output: Writing to this register places corresponding values in all bits of

the particular PORT pins.

Input: The current state of digital port pins can be read from this
register, regardless of pin direction or alternate function selection (as
long as pins are not configured as an input to ADC

IO0CLR=(1<<10), this is how we can make P0.10 to become LOW (LED
turned ON). IOOSET= (1<<10), would make output HIGH (LED turned
OFF) for Pin P0.10.

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 39 -

21C543, MES-LAB

Sample ‘C’ Program: To write a C program to Blink a LED /Port Pin with LPC
2148 ARM 7 Microcontroller.

#include <lpc214x.h> //Header File “x” can be wrt to
controller
unsigned int delay;

int main(void)

{
IO1DIR = (4); // Bit No 4 (0100) will be activated

while(1) // If True
{

IO1CLR = (04); // Clear Bit 04 of GPIO1
for (delay=0 ;delay<5000; delay++); // Call Delay
IO1SET = (04); // Set Bit 04 of GPIO1
for (delay=0; delay<5000; delay++); // Call Delay

}
}
ie roje s ebug | Peri : Window Hel Vw - V -

=" Sa@ 9
% EO oo ule 0E

14
GPIO Fast Interface >
s v
L2C Interface »
SPLInterface »
S5P Interface

000000000 el k
(0x00000000 Pulse Width Madulator
0:00000000 A/D Converter v
000000000 : celapr) :
D/A Converter
Real Time Clock ¢ delay+t):

Watchdog Timer

General Purpose InputfOutput 1 (GPIO 1) - Slow Interface [Z|
GRIOT

ot0R B T T P e

IDTSET: 000000004 T T [T T I T [T I M

IOTCLR: |0w00000000 [T T T T (T FT T T I [T T FTrrrrrr

I01FIN: [0sFFFFO0M PR PR FPRRRRRRR T FT T TR
Fins: [WFFFFOD0 GV vl MRV

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 40 -

21CS543, MES-LAB

Program No. 1
Aim: Interface and Control a DC Motor.

DC Motor Control using PWM of LPC1768

In most of the applications controlling the speed of DC motor is essential where
the precision and protection are the essence. Here we will use the PWM
technique to control the speed of the motor

LPC 2148 has one PWM channel with six ports. PWM changes the average
output voltage by fast switching. By changing the on time, the output voltage
can be 0 to 100%. There are two software parameters that need a little
explanation: cycle and offset. Cycle is the length of a PWM duty cycle and offset
is the on time of a duty cycle.

SELECTING THE PWM FUNCTION TO GPIO

The block diagram below shows the PWM pins multiplexed with other GPIO
pins. The PWM pin can be enabled by configuring the corresponding PINSEL
register to select PWM function. When the PWM function is selected for that pin
in the Pin Select register, other Digital signals are disconnected from the PWM
input pins.

PWM REGISTERS:

The registers associated with LPC1768 PWM are

O IR-> Interrupt Register: The IR can be written to clear interrupts. The IR can
be read to identify which of eight possible interrupt sources are pending.

0 TCR-> Timer Control Register: The TCR is used to control the Timer Counter
functions. The Timer Counter can be disabled or reset through the TCR.

0PR- > Prescale Register: The TC is incremented every PR+1 cycles of PCLK.

o MCR-> Match Control Register: The MCR is used to control if an interrupt is
generated and if the TC is reset when a Match occurs.

O MRO - MR6-> Match Register: Each can be enabled in the MCR to reset the
TC, stop both the TC and PC, and/or generate an interrupt when it matches the
TC.

O PCR-> PWM Control Register: Enables PWM outputs and selects PWM
channel types as either single edge or double edge controlled.

o LCR-> Load Enable Register: Enables use of new PWM match values.

Note: for detailed description of each registers kindly refer PWM waveform
section

If you need to control the speed of a DC motor you have a few options.
Controlling the speed by controlling either voltage or current is inefficient. Let-s
understand a bit the speed control of DC motor Using Pulse Width Modulation
because controlling how long the voltage is applied with a certain frequency
gives you the best control over the motor--s speed.

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 41 -

21CS543, MES-LAB

Conventional power supplies tend to generate lots of heat because are working
as variable resistors pumping current through external circuits. The pulse
width modulation circuits are digital circuits which produce pulsed current.
Due to the fact that the pulsed width modulation power supplies works in a
state in between on and off, the heat generated is very low compared to the
conventional power supplies.

The duty cycle of the circuit can be changed by pressing the switches SW22 and
SW23. If we increase the duty cycle(press SW22), the speed of the motor
increases and if we decrease the duty cycle(press SW23), the speed of the motor
decreases.

PROGRAM:

#include <LPC214x.H>
void delay_led(unsigned long int); // Delay Time Function
int main(void)

{

I0O1DIR = 0xC0000000;

IOODIR = 0x00200000;

while(1) // Loop Continue

{

IOOSET = 0x00200000;

delay_led(15000);

IO1SET = 0x80000000;

I0O1CLR = 0x40000000; // Clear Pin P0.7,6,5,4 (ON LED)
delay_led(1500000); // Display LED Delay

IO1SET = 0x40000000;

I0O1CLR = 0x80000000; // Set Pin P0.7,6,5,4 (OFF LED)
delay_led(1500000); // Display LED Delay

}
}

/***********************/

/* Delay Time Function */
/***********************/

void delay_led(unsigned long int count1)

{

while(countl > 0) {countl--;} // Loop Decrease Counter

}

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 42 -

21C543, MES-LAB

Program No. 2 Date:

Aim: Interface a Stepper motor and rotate it in clockwise and anti-
clockwise direction.

How Stepper Motors Work?

Stepper motors consist of a permanent magnetic rotating shaft, called
the rotor, and electromagnets on the stationary portion that surrounds
the motor, called the stator. Figure 1 illustrates one complete rotation of
a stepper motor. At position 1, we can see that the rotor is beginning at
the upper electromagnet, which is currently active (has voltage applied to
it). To move the rotor clockwise (CW), the upper electromagnet is
deactivated and the right electromagnet is activated, causing the rotor to
move 90 degrees CW, aligning itself with the active magnet. This process
is repeated in the same manner at the south and west electromagnets
until we once again reach the starting position.

What are stepper motors good for?

O Positioning - Since steppers move in precise repeatable steps, they
excel in applications requiring precise positioning such as 3D printers,
CNC, Camera platforms and X,Y Plotters. Some disk drives also use
stepper motors to position the read/write head.

o Speed Control - Precise increments of movement also allow for
excellent control of rotational speed for process automation and robotics.

O Low Speed Torque - Normal DC motors don't have very much torque at
low speeds. A Stepper motor has maximum torque at low speeds, so they
are a good choice for applications requiring low speed with high

precision. |
] Fe
B s
1&5 2
I 5-
fo o o7 e (£

i

K

. Crrh
g

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 43 -

21CS543, MES-LAB

In the above example, we used a motor with a resolution of 90 degrees or
demonstration purposes. In reality, this would not be a very practical
motor for most applications. The average stepper motor's resolution --
the amount of degrees rotated per pulse -- is much higher than this. For
example, a motor with a resolution of 1.8 degrees would move its rotor

1.8 degrees per step, thereby requiring 200 pulses (steps) to complete a
full 360 degree rotation.

Here we are using 200 pole stepper motor hence it gives 360degree/200
pole=1.8 degree per step.

So for example if we need 120 degree rotation then we have to apply
approximately 67 pulses to complete 120 degree rotation
120/1.8=66.66==67 steps approximately.

Here one cycle means 4 steps. So if we need 90 degree rotation then
90/1.8=50 steps.

Here one cycle means 4 steps. So 50/4=12.5 =~ 13. So we need 13 cycles
to rotate 90 degree.

If we want to run 180 degree then 180/1.8=100. So 100/4=25 cycles
would make a stepper motor to rotate 180 degree.

PROGRAM:

#include <LPC214X.h>

void delay();

void delay()
{
int ij;
for (i=0; i<O0xff; i++)
for (j=0; j<Oxff; j++);

int main()
{
IOO0ODIR=0x000F0000; //Consider ARM port Pin from 16-19
//And set these pins
while (1)

{
//while (I00PIN & 0x00008000);

//while (! (I00PIN & 0x00008000));

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 44 -

21CS43, MES-LAB

IOOPIN=0x00010000;
delay (); ; This is for Clock wise rotation
[IOOPIN=0x00020000;
delay (); ; For Anti- Clock wise Change
IO0OPIN=0x00040000; the direction as 8,4,2,1

delay ();
[OOPIN=0x00080000;

delay();

v ARM LPC 2148

VBbA
s 1’1_'.‘_'&- L Yellow
ss ‘r
‘.“: —_— E T black
vasl LH— orrange
vss4 P1.21 a—- 1 (L o e
= VERSA P‘Lzz E‘: LI';_. -LH_ E brown m—-l 1
&1 a3 E I~ 12
g Il
E"_ [E] D LH- 1
12A1.H:z = I~ 10
el = d
el re '
= i b . e i
1 TLN2003 UNI-POLAR STEPPERMOTOR

Driver

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 45 -

21C543, MES-LAB

Program No. 3 Date:

Aim: Determine Digital output for a given Analog input using
Internal ADC of ARM controller.

Analog to Digital Converter(ADC) is used to convert analog signal into digital

form. LPC2148 has two inbuilt 10-bit ADC i.e. ADCO & ADC1.

¢ ADCO has 6 channels &ADC1 has 8 channels.

¢ Hence, we can connect 6 distinct types of input analog signals to ADCO
and 8 distinct types of input analog signals to ADC1.

e ADCs in LPC2148 use Successive Approximation technique to convert
analog signal into digital form.

e This Successive Approximation process requires a clock less than or
equal to 4.5 MHz. We can adjust this clock using clock divider settings.

e Both ADCsin LCP2148 convert analog signals in the range of 0V to
VREF (typically 3V; not to exceed VDDA voltage level).

LPC 2148 ADC Pins

©
ful
=
w
=
-
w
«
@
a
g
=
N
o
a

7 PO.19/MAT1.2/MOSI/CAP1.2
Il P0.18/CAP1.3/MISO1/MAT1.3

x
o
[~
&
il
a

B
o

|P0.21/PWMS/AD1.6/CAP1.3| i} L4 P1.20/TRACESYNC
[P0.22/AD1.7/CAP0.0/MATO.0| 4 140 PO.17/CAP1.2ISCK1/MAT1.2

P0.16/EINTO/MATO0.2/CAP0.2
P0.15/RI1/EINT2/AD1.5'

LUl P1.22/PIPESTAT1
LPC2148 <} [POAIDTRIMAT1A/AD1 4]
38
k740 PO.11/CTS1ICAP1.1/SCLA
<41 P1.23/PIPESTAT2
) PAORTSIEAPTO7A512]
PO.9/RXD1/PWMG/EINT3

P1.16/TRACEPKTO [-] [P0.8/TXD1/PWMA4/AD1.1]

=i
w
2
N
-
N

P1.31/TRST [

PO.1/RXDO/PWMB3/EINTO [}

P1.25/EXTINO [

P0.31/UP_LED/CONNECT [}
PO.O/TXDO/PWMA [}
P0.2/SCLO/CAP0.0 [
P0.7/SSELO/PWM2/EINT2
P1.24/TRACECLK [

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 46 -

21CS543, MES-LAB

ADO.1:4, AD0.6:7 & AD1.7:0 (Analog Inputs)

These are Analog input pins of ADC. If ADC is used, signal level on analog pins
must not be above the level of VDDA; otherwise, ADC readings will be invalid. If
ADC is not used, then the pins can be used as 5V tolerant digital I/0 pins.

VREF (Voltage Reference)
Provide Voltage Reference for ADC.
VDDA& VSSA (Analog Power and Ground)

These are the power and ground pins for ADC. These should be same as VDD &
VSS.

Let’s see the ADC registers which are used to control and monitors the ADC

operation.

Here, we will see ADCO registers and their configurations. ADC1 has similar

registers and can be configured in a similar manner.

ADCO Registers

1. ADOCR (ADCO Control Register)

¢ ADOCRIisa 32-bitregister.

e This register must be written to select the operating mode before A/D
conversion can occur.

e Itis used for selecting channel of ADC, clock frequency for ADC, number
of clocks or number of bits in result, start of conversion and few other

parameters.

ADOCR (ADCO Control Register)
e Bits 7:0 - SEL

These bits select ADCO channel as analog input. In software-controlled
mode, only one of these bits should be 1l.e.g. bit 7 (10000000) selects
ADO.7 channel as analog input.

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 47 -

21CS543, MES-LAB

Bits 15:8 — CLKDIV

The APB(ARM Peripheral Bus)clock is divided by this value plus one, to
produce the clock for ADC.
This clock should be less than or equal to 4.5MHz.

Bit 16 —- BURST

0 = Conversions are software controlled and require 11 clocks
1 =In Burst mode ADC does repeated conversions at the rate selected by
theCLKS field for the analog inputs selected by SEL field. It can be
terminated by clearing this bit, but the conversion that is in progress will

be completed.

When Burst = 1, the START bits must be 000, otherwise the conversions

will not start.

Bits 19:17 — CLKS

Selects the number of clocks used for each conversion in burst mode and
the number of bits of accuracy of Result bits of ADODR.
e.g. 000 uses 11 clocks for each conversion and provide 10 bits of result

in corresponding ADDR register.

000 = 11 clocks / 10 bits
001 = 10 clocks / 9 bits
010 = 9 clocks / 8 bits
011 = 8 clocks / 7 bits
100 = 7 clocks / 6 bits
101 = 6 clocks / 5 bits
110 = 5 clocks / 4 bits

111 = 4 clocks / 3 bits

Bit 20 — RESERVED

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 48 -

21CS543, MES-LAB

e Bit 21 - PDN
0 = ADC is in Power Down mode
1 = ADC is operational

e Bit23:22 - RESERVED

¢ Bit 26:24 - START
When BURST bit is 0, these bits control whether and when A/D

conversion is started

000
001

No start (Should be wused when clearing PDN to 0)

Start conversion now

010 = Start conversion when edge selected by bit 27 of this register
occurs on CAP0.2/MATO.2 pin

011= Start conversion when edge selected by bit 27 of this register
occurs on CAP0.0/MATO.0 pin

100 = Start conversion when edge selected by bit 27 of this register
occurs on MATO.1 pin

101 = Start conversion when edge selected by bit 27 of this register
occurs on MATO0.3 pin

110 = Start conversion when edge selected by bit 27 of this register
occurs on MAT1.0 pin

111 = Start conversion when edge selected by bit 27 of this register

occurs on MAT1.1 pin

e Bit27 - EDGE

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 49 -

21CS543, MES-LAB

This bitis significant only when the Start field contains 010-111. In

these cases,

0 = Start conversion on a rising edge on the selected CAP/MAT signal
1 = Start conversion on a falling edge on the selected CAP/MAT signal
Bit 31:28 - RESERVED

2. ADOGDR (ADCO Global Data Register)

ADOGDR is a 32-bitregister.
This register contains the ADC’s DONE bit and the result of the most

recent A/D conversion.

ADOGDR (ADCO Global Data Register)

Bit 5:0 - RESERVED
Bits 15:6 - RESULT
When DONE bit is set to 1, this field contains 10-bit ADC result that has
a value in the range of 0 (less than or equal to VSSA) to 1023 (greater
than or equal to VREF).
Bit 23:16 - RESERVED

e Bits 26:24 - CHN
These bits contain the channel from which ADC value is read.
e.g. 000 identifies that the RESULT field contains ADC value of channel
0.
Bit 29:27 - RESERVED
Bit 30 - Overrun
This bit is set to 1 in burst mode if the result of one or more conversions
is lost and overwritten before the conversion that produced the result in
the RESULT bits.
This bit is cleared by reading this register.
Bit 31 - DONE

This bit is set to 1 when an A/D conversion completes. It is cleared when

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 50 -

21CS543, MES-LAB

this register is read and when the ADOCR is written.
If ADOCR is written while a conversion is still in progress, this bit is set

and new conversion is started.

3. ADGSR (A/D Global Start Register)

¢ ADGSR is a 32-bitregister.
e Software can write to this register to simultaneously start conversions on
both ADC.

ADGSR (A/D Global Start Register)

¢ BURST (Bit 16), START (Bit <26:24>) & EDGE (Bit 27)
These bits have same function as in the individual ADC control registers
i.e. ADOCR & AD1CR. Only difference is that we can use these function

for both ADC commonly from this register.

4. ADOSTAT (ADCO Status Register)

e ADOSTAT is a 32-bitregister.

¢ Itallows checking of status of all the A/D channels simultaneously.

ADOSTAT (ADCO Status Register)

¢ Bit 7:0 - DONE7:DONEO
These bits reflect the DONE status flag from the result registers for A/D
channel 7 - channel 0.

¢ Bit 15:8 - OVERRUN7:0VERRUNO
These bits reflect the OVERRUN status flag from the result registers for
A/D channel 7 - channel 0.

¢ Bit 16 - ADINT
This bit is 1 when any of the individual A/D channel DONE flags is
asserted and enables ADC interrupt if any of interrupt is enabled in
ADOINTEN register.

e Bit31:17 - RESERVED

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 51 -

21CS543, MES-LAB

5. ADOINTEN (ADCO Interrupt Enable)

e ADOINTEN is a 32-bit register.
e It allows control over which channels generate an interrupt when

conversion is completed.

ADOINTEN (ADCO Interrupt Enable)

e Bit 0 - ADINTENO
0 = Completion of a A/D conversion on ADC channel 0 will not generate
an interrupt
1 = Completion of a conversion on ADC channel 0 will generate an
interrupt

¢ Remaining ADINTEN bits have similar description as given
for ADINTENO.

e Bit 8 - ADGINTEN
0 = Only the individual ADC channels enabled by ADINTEN7:0 will
generate interrupts
1 = Only the global DONE flag in A/D Data Register is enabled to

generate an interrupt
6. ADODRO-ADODR7 (ADCO Data Registers)

e These are 32-bit registers.
e They hold the result when A/D conversion is completed.
e They also include flags that indicate when a conversion has been

completed and when a conversion overrun has occurred.

ADO Data Registers Structure

e Bit 5:0 - RESERVED

e Bits 15:6 - RESULT
When DONE bit is set to 1, this field contains 10-bit ADC result that has
a value in the range of 0 (less than or equal to VSSA) to 1023 (greater
than or equal to VREF).

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 52 -

21CS543, MES-LAB

e Bit 29:16 - RESERVED

e Bit 30 - Overrun
This bit is set to 1 in burst mode if the result of one or more conversions
is lost and overwritten before the conversion that produced the result in
theRESULT bits.
This bit is cleared by reading this register.

¢ Bit 31 - DONE
This bit is set to 1 when an A/D conversion completes. It is cleared when

this register is read.
Steps for Analog to Digital Conversion

1. Configure the ADXCR (ADC Control Register) according to the need of
application.

2. Start ADC conversion by writing appropriate value to START bits in
ADxCR. (Example, writing 001 to START bits of the register 26:24,
conversion is started immediately).

3. Monitor the DONE bit (bit number 31) of the corresponding ADxDRy
(ADC Data Register) till it changes from 0 to 1. This signals completion of
conversion. We can also monitor DONE bit of ADGSR or the DONE bit
corresponding to the ADC channel in the ADCxSTAT register.

4. Read the ADC result from the corresponding ADC Data Register.
ADxDRy. E.g. ADODR1 contains ADC result of channel 1 of ADCO.

PROGRAM:

#include<LPC214X.H>

#define ch (1 << 3)
#define clk_div (3 << 8)
#define bst_on (1 << 16)
//#define bst_off (0 << 16)
#define clk_res (0 << 17)
#define operational (1 << 21)

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 53 -

21CS543, MES-LAB

#define start (0 << 24)
#define adc_init_macro ch | clk_div | bst_on | clk_res |
operational | start

#define EN (1 << 28)

#define RW (1 << 29)

#define RS (1 << 22)

#define DATA (0Xff << 6)

#define port EN | RW | RS | DATA

void adc_init(void);

void delay(int count);

void cmd(int c);

void data(char d);

void lcd_string(char *str);
void display(unsigned int n);

unsigned int result;
float voltage;
char volt[18];

void adc_init(void)

{
}

void cmd(int c)

{

ADOCR = adc_init_macro;

IOPINO = c << 6;
IOCLRO = RW;
IOCLRO = RS;
IOSETO = EN;
delay(100);
IOCLRO = EN;

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 54 -

21CS543, MES-LAB

void data(char d)

{
IOPINO =d << 6;
IOCLRO = RW;
IOSETO = RS;
IOSETO = EN;
delay(100);
IOCLRO = EN;
}
void lcd_string(char *str)
{
while(*str)
{
data(*str);
str++;
delay(20);
}
}
void display(unsigned int n)
{
if(n == 0)
data(n+0x30);
if(n)
{
display(n / 10);
data((n % 10) + 0x30);
}
}
void delay(int count)
{
int i,j;
for(i = 0;i < count;i++)
for(j = 0;j < 5000;j++);
}
L e
MAIN
___ */
int main()
{
intc = 0;

IODIRO |= port;
PINSEL1|=0x10000000;

Dept. of AD, CIT, Gubbi- 572 216

Page No. - 55 -

21CS543, MES-LAB

cmd(0x38);

cmd(0xO0E);

cmd(0X80);

cmd(0X01);

adc_init();

lcd_string("ADC PROGRAM");

cmd(0X01);

while(1)

{
cmd(0x01);
while((ADODR3 & (0x80000000)==0));
result = (ADODR3 & (0X3FF << 6));
result = result >> 6;
lcd_string("ADC:");
cmd(0x86);
display(result);
voltage = ((result/1023.0) * 3.3);
cmd(0xc0);
sprintf(volt, "Voltage=%.2f V ", voltage);
lcd_string(volt);
//delay(1000);

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 56 -

21CS543, MES-LAB

Program No. 4

Aim: Interface a DAC and generate Triangular and Square
waveforms.

Digital to Analog Converter (DAC) are mostly used to generate analog signals (e.g.

sine wave, triangular wave etc.) from digital values.

e LPC2148 has 10-bit DAC with resistor string architecture. It also works
in Power down mode.

e LPC2148 has Analog output pin (AOUT) on chip, where we can get digital
value in the form of Analog output voltage.

e The Analog voltage on AOUT pin is calculated as ((VALUE/1024) * VREF).
Hence, we can change voltage by changing VALUE(10-bit digital value)
field in DACR (DAC Register).

° e.g. if we set VALUE = 512,
then, we can get analog voltage on AOUT pin as ((512/1024) * VREF) =
VREF/2.

AOUT (Analog Output)

This is Analog Output pin of LPC2148 DAC peripheral where we can get Analog

output voltage from digital value.

VREF (Voltage Reference)

Provides Voltage Reference for DAC.
VDDA& VSSA (Analog Power and Ground)

These are the power and ground pins for DAC. These should be same as VDD&
VSS.

Let’s see the Register used for DAC

DACR (DAC Register)

¢ DACRis a32-bitregister.

e Itis aread-write register.

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 57 -

DACR (DAC Register)

¢ Bit 5:0 - RESERVED

e Bits 15:6 - VALUE
This field contains the 10-bit digital value that is to be converted in to
Analog voltage. We can get Analog output voltage on AOUT pin and it is
calculated with the formula (VALUE/1024) * VREF.

e Bit 16 - BIAS
0 = Maximum settling time of lusec and maximum current is 700pA
1 = Settling time of 2.5pusec and maximum current is 350pA
Note that, the settling times are valid for a capacitance load on the AOUT
pin not exceeding 100 pF. A load impedance value greater than that
value will cause settling time longer than the specified time.

e Bit 31:17 - RESERVED

Programming Steps

¢ First, configure P0.25/A0UT pin as DAC output using PINSEL Register.
¢ Then setsettling time using BIAS bitin DACR Register.

¢ Now write 10-bit value (which we want to convert into analog form) in

VALUE field of DACR Register.

P118TRACEPKT2 "Tl POA4IDCDYEINTASDAT
[Po.257AD0.47A0UT] -] LU P1.22/PIPESTATY
LPC2148 =11 POA3DTRI/MATI.1/AD1.4
“131 P0.12/DSR1/MAT1.0/AD1.3
EVA POA1ICTSHICAP 1/SCLA
PO.28/ADO.1/CAPO.2/MATO.2 [=111 P1.23/PIPESTAT2
PO.28/AD0.2/CAPO.3/MATO.3 [L) “1}1 PO.1DRTS1ICAP1.0/AD1.2
PO.30/ADO.J/EINT3/CAPO.0 (s PO.SIRXD/PWMEEINT3
P1.16/TRACEPKTO E[] S5Y1 POAITXD1PWMAIAD] A

)

P1.24TRACECLK [}

P0.1/RXDO/PWMS3/EINTO [}
P0.2/SCLO/CAPOQ.0 [

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 58 -

21CS543, MES-LAB

Refer for the program https://www.electronicwings.com/arm?7/lpc2148-dac-

digital-to-analog-converter

PROGRAM:

SQUARE WAVE PROGRAM

#include "LPC214X.h"

unsigned int result=0x00000040,val;

int main()

{

PINSEL1|=0x00080000;

while(1)

{
while(1)
{

val =0xFFFFFFFF;
DACR=val;

{
break;
}
}
while(1)
{

val =0x00000000;
DACR=val;

{
break;
}
}
}

Dept. of AD, CIT, Gubbi- 572 216

Page No. - 59 -

21CS543, MES-LAB

TRIANGLE WAVE PROGRAM
#include "LPC214X.h"

unsigned int value;

int main()

{

PINSEL1|=0x00080000;

while(1)
{
value = 0;
while (value != 1023)
{
DACR = ((1<<16) | (value<<6));
value++;

}

while (value != 0)

{
DACR = ((1<<16) | (value<<6));

value--;

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 60 -

21C543, MES-LAB

Program No. 5

Date:

Aim: Interface a 4x4 keyboard and display the key code on an LCD.

FCC(5
TP M D N N5 D < H R R
L PS4 s 6% T) g1
2 (Prig sz . 81 90X AL BV 1 1 0 1
f (P119) 514 c| Dy B Frl 1110
4
8
(P120) kelll———
(P1.21) k2
(P122) kel3
(P123) kal4
PROGRAM:
#include <LPC214x.H> /* LPC214x definitions */

#include "lcd.h"

[I1177777777777777777777777777777777771777777
// Matrix Keypad Scanning Routine

//

// COL1 COL2 COL3 COL4
//0 1 2 3 ROWI1
//4 5 6 7 ROW?2
//8 9 A B ROWS3
//C D E F ROWA4

[117777777777777777777777777777777117777777777

#define SEG7_CTRL_DIR IOODIR
#define SEG7_CTRL_SET IOOSET
#define SEG7_CTRL_CLR IO0OCLR

#define COL1 (1 << 16)
#define COL2 (1<<17)
#define COL3 (1 << 18)
#define COL4 (1 << 19)
#define ROW1 (1 << 20)
#define ROW?2 (1 << 21)

Dept. of AD, CIT, Gubbi- 572 216

Page No. - 61 -

21CS543, MES-LAB

#define ROW3 (1 << 22)

#define ROW4 (1 << 23)

#define COLMASK (COL1 | COL2 | COL3 | COL4)

#define ROWMASK (ROW1 | ROW2 | ROW3 | ROW4)

#define KEY_CTRL_DIR I01DIR
#define KEY_CTRL_SET IO1SET
#define KEY_CTRL_CLR I01CLR
#define KEY_CTRL_PIN IO1PIN

/17111//77///// COLUMN WRITE ///////]1/1/11/11/]1]

void col_write(unsigned char data)

{

unsigned int temp=0;
temp=(data << 16) & COLMASK;

KEY_CTRL_CLR |= COLMASK;
KEY_CTRL_SET |= temp;

}

[117777777777777777777/77/77/7//// MAIN
[11777777777777777777777777777777777777
int main (void)

{

unsigned char key, i;

unsigned char rval[] = {0x7,0xB,0xD,0xE,0x0};
unsigned char keyPadMatrix[] =

{

’ ’ ’ ’

4','8",'B",'F

'3"'7"'A','E',
2.'6",'0
1'5

1T -ona ','D',

T l,l l,lg',lcl
7
init_lcd();

KEY_CTRL_DIR |= COLMASK; //Set COLs as Outputs
KEY_CTRL_DIR &= ~(ROWMASK); // Set ROW lines as Inputs

lcd_putstring16(0,"Press HEX Keys..");
led_putstring16(1,"Key Pressed = ");

Dept. of AD, CIT, Gubbi- 572 216 Page No.

- 62 -

21CS543, MES-LAB

while (1)

{
key = 0;
for(i=0;i<4;i++)
{

// turn on COL output one by one col_write(rval[i]);

// read rows - break when key press detected
if ({(KEY_CTRL_PIN & ROW1))
break;

key++;
if ({(KEY_CTRL_PIN & ROW2))
break;

key++;
if (1(KEY_CTRL_PIN & ROW3))
break;

key++;
if ({(KEY_CTRL_PIN & ROW4))
break;

key++;

if (key == 0x10)
lcd_putstring16(1,"Key Pressed = ");
else
{
lcd_gotoxy(1,14);
lcd_putchar(keyPadMatrix[key]);

Dept. of AD, CIT, Gubbi- 572 216

Page No.

- 63 -

21CS543, MES-LAB

Program No. 6 Date:

Aim: Demonstrate the use of an external interrupt to toggle an LED

On/Off.

#include <LPC214x.H> // LPC2148 MPU Register

/* pototype section */

void delay_led(unsigned long int); // Delay Time Function
int main(void)

{

I0O1DIR = 0xO0FF0000; // Set GP100.7,6,5,4 = Output
// Loop Blink LED on GPIOO0.16 //

while(1) // Loop Continue

{

I0O1CLR = 0xO00FF0000; // Clear Pin P0.7,6,5,4 (ON LED)
delay_led(150000); // Display LED Delay

IO1SET = 0x00FF0000; // Set Pin P0.7,6,5,4 (OFF LED)
delay_led(150000); // Display LED Delay

}
}

/***********************/

/* Delay Time Function */

/***********************/

void delay_led(unsigned long int count1)

{

while(countl > 0) {countl--;} // Loop Decrease Counter

}

OR (FIRST ONE IS EASY)

#include <LPC214x.H>

int i;

void init_ext_interrupt(void);

__irq void Ext_ISR(void);

int main (void)

{ init_ext_interrupt(); // initialize the external interrupt
while (1)
{

}

void init_ext_interrupt() // Initialize Interrupt

{

}

Dept. of AD, CIT, Gubbi- 572 216

Page No. - 64 -

21CS543, MES-LAB

EXTMODE = 0x4; //Edge sensitive mode on EINT2

EXTPOLAR &= ~(0x4); //Falling Edge Sensitive
PINSELO = 0x80000000; //Select Pin function P0.15 as EINT2

/* initialize the interrupt vector */

VICIntSelect &= ~ (1<<16); // EINT2 selected as IRQ 16
VICVectAddr5 = (unsigned int)Ext_ISR; // address of the ISR
VICVectCntl5 = (1<<5) | 16; //

VICIntEnable = (1<<16); // EINT2 interrupt enabled

EXTINT &= (0x4);

}
__irq void Ext_ISR(void) // Interrupt Service Routine-ISR

{
I01DIR |= (1<<16);

IO1SET |= (1<<16); // Turn OFF Buzzer
for(i=0; i<2000000;i++);

[O1CLR |= (1<<16); // Turn ON Buzzer
EXTINT |= 0x4; //clear interrupt

VICVectAddr = 0; // End of interrupt execution

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 65 -

21CS543, MES-LAB

Program No. 7 Date:

Aim: Display the Hex digits O to F on a 7-segment LED interface,
with an appropriate delay in between

#include <LPC214x.H>

void delay led(unsigned long int);
int main(void)

{

IO0DIR = 0x000007FC;

while(1)

{
IO0CLR = 0x00000FFF;

IOOSET = 0x00000604;
delay 1ed(15000000);
IO0CLR = 0x00000FFF;
IO0OSET = 0x000007E4;
delay 1ed(15000000);
IO0CLR = 0x00000FFF;
IO0OSET = 0x00000648;
delay 1ed(15000000);
IO0CLR = 0x00000FFF;
IO0OSET = 0x00000618;
delay 1ed(15000000);
IO0CLR = 0x00000FFF;
IO0OSET = 0x00000730;
delay led(15000000);
IO0CLR = 0x00000FFF;
IOOSET = 0x00000690:;
delay 1ed(15000000);
IO0CLR = 0x00000FFF;
IOOSET = 0x00000680:;
delay led(15000000);
IO0CLR = 0x00000FFF;
IO0SET = 0x0000063C;
delay 1ed(15000000);
IO0CLR = 0x00000FFF;
IOOSET = 0x00000600;
delay led(15000000);
IO0CLR = 0x00000FFF;
IO0OSET = 0x00000630;
delay 1ed(15000000);
IO0CLR = 0x00000FFF;
IO0SET = 0x00000620;

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 66 -

21CS543, MES-LAB

delay 1ed(15000000);
IO0CLR = 0x00000FFF;
IO0OSET = 0x00000780:;
delay led(15000000);
IO0CLR = 0x00000FFF;
IO0OSET = 0x000006C4;
delay 1ed(15000000);
IO0CLR = 0x00000FFF;
IOOSET = 0x00000708;
delay 1ed(15000000);
IO0CLR = 0x00000FFF;
IO0OSET = 0x000006CO0;
delay 1ed(15000000);
IO0CLR = 0x00000FFF;
IO0OSET = 0x000006EOQ;
delay led(15000000);
IO0CLR = 0x00000FFF;

}

1
void delay led(unsigned lon
{
while(countl > 0) {countl--;
i

int countl

Dept. of AD, CIT, Gubbi- 572 216

Page No. - 67 -

21CS543, MES-LAB

REFERENCES:

Textbooks:

1. Andrew N Sloss, Dominic Symes and Chris Wright, ARM system
developers guide, Elsevier, Morgan Kaufman publishers, 2008.
2. Shibu KV, “Introduction to Embedded Systems”, Tata McGraw Hill

Education, Private Limited, 2nd Edition.

Reference Books:

1. Raghunandan..G.H, Microcontroller (ARM) and Embedded System,
Cengage learning

Publication,2019

2. The Insider’s Guide to the ARM7 Based Microcontrollers, Hitex Ltd.,1st
edition, 2005.

3. Steve Furber, ARM System-on-Chip Architecture, Second Edition,
Pearson, 2015.

4. Raj Kamal, Embedded System, Tata McGraw-Hill Publishers, 2nd
Edition, 2008.

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 68 -

21CS543, MES-LAB

VIVA QUESTIONS:
1. Whatis the processor used by ARM77?
a) 8-bit CISC
b) 8-bit RISC
c) 32-bit CISC
d) 32-bit RISC

2. What the instruction set used by ARM77?
a) 16-bitinstruction set
b) 32-bit instruction set
c) 64-bit instruction set

d) 8-bit instruction set

3. How many registers are there in ARM7?
a. 35register (28 GPR and 7 SPR)
b. 37 register (31 GPR and 7 SPR)
c. 37 register (28 GPR and 9 SPR)
d. 35 register(30 GPR and 5 SPR)
Explanation: ARM7TDMI has 37 registers(31 GPR and 6 SPR).

All these designs use a Von Neumann architecture, thusthe few versions comprising a

cache do not separate data and instruction caches.

4. ARM7 has an in-built debugging device?
a. True

b. False

5. What is the capability of ARM7 instruction for a second?

a. 110 MIPS
b. 150 MIPS
c. 125 MIPS
d. 130 MIPS

6. We have no use of having silicon customization?
a. True

b. False

7. Which of the following has the same instruction set as ARM?7?

Dept. of AD, CIT, Gubbi- 572 216

Page No.

- 69 -

10.

11.

12.

13.

21C543, MES-LAB
a. ARMv3
b. ARM71a0
c. ARMv4T

What are T,D,M,I stands for in ARM7TDMI?
a. Timer, Debug ,Multiplexer, ICE
b. Timer, Debug, Multiplier, ICE
c. Timer, Debug, Modulation, ICE
d. Timer, Debug, Multiplexer, IS
ARM stands for ----------------
a. Advanced RISC Machine
b. Advanced RISC Methodology
c. Advanced Reduced Machine
d. Advanced Reduced Methodology
What are the profiles for ARM architecture?
a AR
b) AM
¢ ALRM
d RM
ARM7DI operates in which mode?
a) Big Endian
b) Little Endian
c) Both big and little Endian
d) Neither big nor little Endian
In which of the following ARM processors virtual memory is present?
a) ARM7DI
b) ARM7TDMI-S
c) ARM7TDMI
d) ARM7EJ-S
How many instructions pipelining is used in ARM7E]J-S?
a) 3-Stage
b) 4-Stage
c) 5-Stage
d)2-stage

Dept. of AD, CIT, Gubbi- 572 216 Page No.

- 70 -

21CS43, MES-LAB
14. How many bit data bus is used in ARM7EJ-s?

a) 32-bit
b) 16-bit
c) 8-bit
d) Both 16 and 32 bit
15.What is the cache memory for ARM710T?
a) 12Kb
b) 16Kb
¢) 32Kb
d) 8Kb

Dept. of AD, CIT, Gubbi- 572 216

Page No. - 71 -

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 72 -

21CS543, MES-LAB

ADDITIONAL PROGRAMS:

1. Write ARM assembly language program to add two 32 bit
numbers.

AREA add32, CODE, READONLY
ENTRY
MAIN

LDR RO, =Valuel

LDR R1, [RO]

ADD RO, RO, #0*4

LDR R2, [RO]

ADD R1, R1, R2

LDR RO, =Result

STR R1, [RO]

SWI &11; TERMINATION

Valuel DCD &37E3C123
Value2 DCD &367402AA
Result DCD O

2. Write ARM assembly language program to add two 64 bit

numbers.
AREA addé64, CODE, READONLY

ENTRY
MAIN
LDR RO, =Valuel ;pointer to first value
LDR R1, [RO] ;load first part of valuel
LDR R2, [RO, #4] ; load lower part of valuel
LDR RO, =Value2 ;pointer to second value
LDR R3, [RO] ;load upper part of value2
LDR R4, [RO, #4] ; load lower part of value2
ADDS R6, R2, R4 ;add lower 4 bytes and set carry flag
ADC R5,R1,R3 ;add upper 4 bytes including carry
LDR RO, =Result ;pointer to result
STR R5, [RO] ;store upper part of result
STR R6, [RO, #4] ;store lower part of result
SWI &11

Valuel DCD &12A2E640, &F2100123
Value2 DCD &001019BF, &40023F51
Result DCD O

END

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 73 -

21CS543, MES-LAB

DATA EXCHANGE

area data_exch,code,readonly
entry
1dr r0,=0x40000000
ldr r1,=0x40000044
mov r4,#09

loop ldr r2,[r0]
mov r5,r2
Idr r6,[r1]
str r6,[r0],#04
str r5,[r1],#04
subs r4,#01
cmp r4,#00
bne loop

stop b stop

end
BLOCK OF DATA TRANSFER

area data_trans,code,readonly
entry
ldr r0,=0x40000000
ldr r1,=0x40000044
mov r4,#09

loop 1dr r2,[r0],#04
str r2,[r1],#04
subs r4,#01
cmp r4,#00
bne loop
stop b stop

end

Dept. of AD, CIT, Gubbi- 572 216

Page No. - 74 -

21CS543, MES-LAB

3. To interface LCD with ARM processor-- ARM7TDMI/LPC2148.
Write and execute programs in C language for displaying text messages

and numbers on LCD
#include <LPC214x.h>

void cmd(unsigned char d);
void datal(unsigned char t);
void delay (int count);

int main()

{

int i;

unsigned char name[]={"CBVAR"};

IO0ODIR=0x30403C00;
delay(100);

cmd(0x02);

command

cmd(0x01);

command

cmd(0x28);

entry command(0x38 for 8 bit mode)
cmd(0x06);

command

cmd(0x0C);

cursor off command
//cmd(0xCO0);

line display command

for (i=0;i<11;i++)
{

datal(name[i]);

}

while(1);

}

void cmd(unsigned char d)
{

int a=0;

a =d | OxFFFFFFOF;
IOOCLR |= 0x00003C00;
a=a<<e6;

//cursor home
//clear display
//4-bit mode
//entry mode
//display on

//LCD bottom

Dept. of AD, CIT, Gubbi- 572 216

Page No. - 75 -

21C543, MES-LAB

IOOCLR = 0x20400000;

IOOSET = 0x10000000;

IOOSET =(IOO0SET | 0x00003c00)&a;
delay(1000);

IOOCLR = 0x10000000;

a=0x0;

d=d<<4;

a =d | OxFFFFFFOF;

IOOCLR |= 0x00003CO00;

a=a<<6;

IOOCLR = 0x20400000;

IOOSET = 0x10000000;

IOOSET = (IOOSET | 0x00003C00)&a;
delay(1000);

IOOCLR = 0x10000000;

}

void datal(unsigned char t)

{

int b=0;

b = t|OxFFFFFFOF;

IOOCLR |= 0x00003C00;

b=b<<6;

IOOSET = 0x10400000;

IOOSET = (IOOSET | 0x00003C00)&b;
delay(1000);

IOOCLR = 0x10000000;

b=0x0;

t=t<<4;

b=t|0xFFFFFFOF;

IOOCLR |= 0x00003CO00;

b=b<<6;

IOOSET = 0x10400000;

IOOSET = (IOOSET | 0x00003C00)&Db;
delay(1000);

IOOCLR = 0x10000000;

1

void delay(int count)
{

intj=0, i=0;

for (j=0;j<count;j++)
for (i=0;i<35;i++);

}

czod

zZ'od

LZod

DEaNATDE

ozZ'od
gl0d
LA
ihud
giod

LT

o
(s i m |2 <
£=3 [% L2 '-"‘tﬂ\—(‘)
' a5
Lal bl oy
[l =
=
Hle @
L% s}
B
2= &5
-
gl 2T |8
Y >
el N
= 1
2= ;_E
'j U
= — 3 b

Ao [bl
%’m
iV
P TN

Dept. of AD, CIT, Gubbi- 572 216

Page No. - 76 -

21C543, MES-LAB

ASCENDING AND DESCENDING ORDER PROGRAM IN ANOTHER
METHOD:

AREA DESCENDING, CODE, READONLY

entry i " AREL DESCENDING, CODE, READONLY
mov r5,#05 0z
top mov r0,r5 0z Entry
mov rl, #0x40000000 o mov. r5, 05
05 top mor r0,rh
pass ldr r2,[r1] 08 movy ril, #0x40000000
add r1,#04 07 pass ldr r2,[rl]
1dr r3’[r1] 08 add rl1,#04
2r3 09 1dr r3, [rl]
¢mp rs,r 10 cmp r2,r3
bge/ble loop 11 hge loop
strr2,[r1] 12 str r2, [rl]
mov r4d.ri 13 movr rd,rl
! 14 sub rd,#04
sub r4,#04 15 str r3, [rd]
str r3,[r4] 16 loop sub ro, #01
loop sub r0,#01 17 cmp 0, #00
cmp r0 #00 18 bne pass
’ 19 subs r5,#01
bne pass 20 bne taonp
subs r5,#01 21 stop b stop
bne top 22
stop b stop 23 END s Mark end of file
24
END ; Mark end of file

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 77 -

