|                                   |                                                                                                                                                                     | QMP 7.1 D/F |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Partnering in Academic Excellence | Channabasaveshwara Institute of Technolog<br>(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi)<br>(NAAC Accredited & ISO 9001:2015 Certified Institution) |             |
|                                   | NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka                                                                                                              |             |
| Donard                            | tmont of Electronics & Communication É                                                                                                                              |             |
| Depar                             |                                                                                                                                                                     | ngmeering   |
|                                   |                                                                                                                                                                     |             |
|                                   | Electronic Principles and circuits – BEC30                                                                                                                          | )3          |
|                                   | B.E - III Semester                                                                                                                                                  |             |
|                                   | Lab Manual 2024-25                                                                                                                                                  |             |
|                                   |                                                                                                                                                                     |             |
| Na                                | me '                                                                                                                                                                |             |
|                                   | SN :                                                                                                                                                                |             |
| Ba                                | tch :Section :                                                                                                                                                      |             |
|                                   |                                                                                                                                                                     |             |

**Watermarkly** 



(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi) (NAAC Accredited & ISO 9001:2015 Certified Institution)



NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka

**Department of Electronics & Communication Engineering** 

# **Electronic Principles and circuits – BEC303**

Prepared & Reviewed by:

Vinaya Kumar S R Assistant Professor Approved by:

**Dr.Thejaswini R** Professor & Head,Dept. of ECE





(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi) (NAAC Accredited & ISO 9001:2015 Certified Institution)



# **INSTITUTE VISION**

To create centres of excellence in education and to serve the society by enhancing the quality of life through value based professional leadership,

# **INSTITUTE MISSION**

- To provide high quality technical and professionally relevant education in a diverse learning environment.
- To provide the values that prepare students to lead their lives with personal integrity, professional ethics and civic responsibility in a global society.
- To prepare the next generation of skilled professionals to successfully compete in the diverse global market.
- To promote a campus environment that welcomes and honors women and men of all races, creeds and cultures, values and intellectual curiosity, pursuit of knowledge and academic integrity and freedom.
- To offer a wide variety of off-campus education and training programmes to individuals and groups.
- To stimulate collaborative efforts with industry, universities, government and professional societies.

• To facilitate public understanding of technical issues and achieve excellence in the operations of the institute.

# **QUALITY POLICY**

Our organization delights customers (students, parents and society) by providing value added quality education to meet the national and international requirements. We also provide necessary steps to train the students for placement and continue to improve our methods of education to the students through effective quality management system,

quality policy and quality objectives.







(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi) (NAAC Accredited & ISO 9001:2015 Certified Institution)

# Vision

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

To create globally competent Electronics and Communication Engineering

# **Mission**

professionals with ethical and moral values for the betterment of the society

- To nurture the technical/professional/engineering and entrepreneurial skills for overall self and societal upliftment through co-curricular and extra-curricular events.
- To orient the Faculty/Student community towards the higher education, research and development activities.
- To create the Centres of Excellence in the field of electronics and communication in collaboration with industries/Universities by training the faculty through latest technologies.
- To impart quality technical education in the field of electronics and communication engineering to meet over the current/future global industry requirements.





(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi) (NAAC Accredited & ISO 9001:2015Certified Institution) NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka



# Program Educational Objectives (PEO's)

After four Years of Graduation, our graduates are able to:  $\diamond_{\wedge}$ 

- Provide technical solutions to real world problems in the areas of electronicsand communication by developing suitable systems.
- Pursue engineering career in Industry and/or pursue higher education and research.
- Acquire and follow best professional and ethical practices in Industry andSociety.
- Communicate effectively and have the ability to work in team and to lead theteam.

# **Program Specific Outcomes (PSO's)**

## At the time of graduation, our graduates are able to:

PS01: Specify, design, build and test analog and digital systems for signal processing including multimedia applications, using suitable components or Simulation tools.

PSO2: Understand and architect wired and wireless analog and digital Communication systems as per specifications and determine their performance.





(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi) (NAAC Accredited & ISO 9001:2015Certified Institution) NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka



 $\wedge$ 

#### **DEPARTMENT OF ELECTRONICS & COMMUNICATIONENGINEERING**

## SYLLABUS

| Course Code:                                       | BEC303                                                   | CIE Marks: 25 |  |  |  |
|----------------------------------------------------|----------------------------------------------------------|---------------|--|--|--|
| Lab Duration:                                      | 2 hours                                                  |               |  |  |  |
| Laboratory Experiments                             | ^                                                        | RBT Level     |  |  |  |
| 1. Design and Test                                 | $\bigcirc$                                               |               |  |  |  |
| (i) Bridge Rectifier with Capacit                  | or Input Filter                                          | L3            |  |  |  |
| (ii) Zener Voltage Regulator                       |                                                          |               |  |  |  |
| 2. Design and Test                                 | <u> </u>                                                 |               |  |  |  |
| Biased Clippers – a) Positive, b) Negative, c) Pos | sitive-Negative                                          | L3            |  |  |  |
| Positive and Negative Clampers with and witho      | ut Reference                                             |               |  |  |  |
| 3. Plot the transfer and drain characteris         | tics of a JFET and calculate its drain                   | L3            |  |  |  |
| resistance, mutual conductance and amplificati     | resistance, mutual conductance and amplification factor. |               |  |  |  |
| 4. Plot the transfer and drain characteris         | tics of n-channel MOSFET and calculate i                 | ts<br>L3      |  |  |  |
| parameters, namely: drain resistance, mutual c     | onductance and amplification factor.                     |               |  |  |  |
| 5. Design and Test (i) Emitter follower, (ii       | i) Darlington connection                                 | L3            |  |  |  |
| 6. Design and plot the frequency response          | se of Common Source JFET/MOSFET                          | 13            |  |  |  |
| amplifier.                                         |                                                          |               |  |  |  |
| 7. Test the Op amp comparator with zero            | o and non-zero reference and obtain the                  | 13            |  |  |  |
| Hysteresis curve.                                  |                                                          |               |  |  |  |
| 8. Design and test Full-wave controlled re         | ectifier using RC triggering circuit.                    | L3            |  |  |  |
| 9. Design and test Precision Half wave an          | nd Full wave rectifiers using Op-amp.                    | L3            |  |  |  |
| 10. Design and test RC phase shift oscillator.     |                                                          | L3            |  |  |  |





(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi) (NAAC Accredited & ISO 9001:2015Certified Institution) NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka



Department of Electronics and Communication Engineering

-----

## Electronic Principles and circuits: Outcomes

## **COURSE OUTCOMES :**

After completing this course the student could be able to:

- 1. Understand the characteristics of BITs and FETs for switching and amplifier circuits.
- 2. Design and analyze amplifiers and oscillators with different circuit configurations and biasing conditions.
- 3. Understand the feedback topologies and approximations in the design of amplifiers and oscillators.
- 4. Design of circuits using linear ICs for wide range applications such as ADC, DAC, filters and timers.

5. Understand the power electronic device components and its functions for basic power electronic circuits.





(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi) (NAAC Accredited & ISO 9001:2015Certified Institution) NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka



Department of Electronics and Communication Engineering

## 'Instructions to the Candidates'

- Student should come with thorough preparation for the experiment to be conducted.
- Student should take prior permission from the concerned faculty before availing the leave.
- Student should come with proper dress code and to be present on time in the laboratory.
- Student will not be permitted to attend the laboratory unless they bring the practical record fully completed in all respects pertaining to the experiment conducted in the previous class.
- Student will not be permitted to attend the laboratory unless they bring the observation book fully completed in all respects pertaining to the experiment to be conducted in present class.
- Experiment should be started conducting only after the staff-in-charge has checked the circuit diagram.
- All the calculations should be made in the observation book. Specimen calculations for one set of readings have to be shown in the practical record.
- Wherever graphs to be drawn, A-4 size graphs only should be used and the same should be firmly attached in the practical record.
- Practical record and observation book should be neatly maintained.
- Student should obtain the signature of the staff-in-charge in the observation book after completing each experiment.
- Theory related to each experiment should be written in the practical record before procedure in your own words with appropriate references.





(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi) (NAAC Accredited & ISO 9001:2015Certified Institution) NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka



## Department of Electronics and Communication Engineering

# CONTENTS

|    | EXP.NNAME OF THE EXPERIMENTO. |                                                           | PAGE<br>NO.  |  |
|----|-------------------------------|-----------------------------------------------------------|--------------|--|
|    |                               | Design and Test                                           | $\mathbb{N}$ |  |
|    | 1                             | (i) Bridge Rectifier with Capacitor Input Filter          | ) 1          |  |
|    |                               | (ii) Zener Voltage Regulator                              |              |  |
|    |                               | Design and Test                                           |              |  |
|    |                               | Biased Clippers - a) Positive, b) Negative, c) Positive-  |              |  |
|    | 2                             | Negative                                                  | 4            |  |
|    |                               | Positive and Negative Clampers with and without           |              |  |
|    |                               | Reference                                                 |              |  |
|    |                               | Plot the transfer and drain characteristics of a JFET and |              |  |
|    | 3                             | calculate its drain resistance, mutual conductance and    | 9            |  |
|    |                               | amplification factor.                                     |              |  |
|    |                               | Plot the transfer and drain characteristics of n-channel  |              |  |
|    | 4                             | MOSFET and calculate its parameters, namely: drain        | 11           |  |
|    |                               | resistance, mutual conductance and amplification factor.  |              |  |
|    | F                             | Design and Test (i) Emitter follower, (ii) Darlington     | 12           |  |
|    | 3                             | connection                                                | 15           |  |
|    | 6                             | Design and plot the frequency response of Common Source   | 16           |  |
|    | 0                             | JRET/MOSFET amplifier.                                    | 10           |  |
|    | 7 40                          | Test the Op-amp comparator with zero and non-zero         | 10           |  |
|    |                               | reference and obtain the Hysteresis curve.                | 10           |  |
| // |                               | Design and test Full-wave controlled rectifier using RC   | 21           |  |
| // |                               | triggering circuit.                                       | 21           |  |
|    | $\checkmark$                  | Design and test Precision Half wave and Full wave         | 23           |  |
|    | )                             | rectifiers using Op-amp.                                  | 23           |  |
|    | 10                            | Design and test RC phase shift oscillator.                | 25           |  |
|    |                               | -                                                         |              |  |





(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi) (NAAC Accredited & ISO 9001:2015Certified Institution) NH 206 (B.H. Road), Gubbi, Tumkur – 572 216.



Karnataka

#### Department of Electronics and Communication Engineering

# **INDEX PAGE**

| SI.<br>No | Name of the Experiment                                                                                        |            | Date       |                         | al Marks<br>IX . 20) | d Marks<br>ax. 10) | lature<br>Ident) | lature<br>culty) |
|-----------|---------------------------------------------------------------------------------------------------------------|------------|------------|-------------------------|----------------------|--------------------|------------------|------------------|
|           | <b>P</b>                                                                                                      | Conduction | Repetition | Submission of<br>Record | Manua                | Record             | Sigr<br>(Stu     | Sigr<br>(Fa      |
| 1         | Design and Test                                                                                               |            |            | _ <                     | $\mathbb{Q}$         |                    |                  |                  |
|           | <ul><li>(iii) Bridge Rectifier with<br/>Capacitor Input Filter</li><li>(iv) Zener Voltage Regulator</li></ul> |            |            | Ó                       |                      |                    |                  |                  |
| 2         | Design and Test                                                                                               |            | $\approx$  | $\diamond$              |                      |                    |                  |                  |
|           | Biased Clippers – a) Positive, b) Negative,<br>c) Positive-Negative                                           |            |            |                         |                      |                    |                  |                  |
|           | Positive and Negative Clampers with and without Reference                                                     |            |            |                         |                      |                    |                  |                  |
| 3         | Plot the transfer and drain characteristics                                                                   | 9          |            |                         |                      |                    |                  |                  |
|           | of a JFE1 and calculate its drain<br>resistance, mutual conductance and<br>amplification factor.              |            |            |                         |                      |                    |                  |                  |
| 4         | Plot the transfer and drain characteristics                                                                   |            |            |                         |                      |                    |                  |                  |
|           | of n-channel MOSFET and calculate its                                                                         |            |            |                         |                      |                    |                  |                  |
|           | parameters, namely: drain resistance,                                                                         |            |            |                         |                      |                    |                  |                  |
|           | factor.                                                                                                       |            |            |                         |                      |                    |                  |                  |
| 5         | Design and Test (i) Emitter follower, (ii)                                                                    |            |            |                         |                      |                    |                  |                  |
|           | Darlington connection                                                                                         |            |            |                         |                      |                    |                  |                  |
| 6         | Design and plot the frequency response of                                                                     |            |            |                         |                      |                    |                  |                  |
|           | Common Source JFET/MOSFET                                                                                     |            |            |                         |                      |                    |                  |                  |
|           |                                                                                                               |            |            |                         |                      |                    |                  |                  |
| 7         | Test the Op-amp comparator with zero and non-zero reference and obtain the                                    |            |            |                         |                      |                    |                  |                  |



|    | Hysteresis curve.                          |  |    |  |
|----|--------------------------------------------|--|----|--|
|    |                                            |  |    |  |
| 8  | Design and test Full-wave controlled       |  |    |  |
|    | rectifier using RC triggering circuit.     |  |    |  |
| 9  | Design and test Precision Half wave and    |  |    |  |
|    | Full wave rectifiers using Op-amp.         |  |    |  |
| 10 | Design and test RC phase shift oscillator. |  |    |  |
|    | Average                                    |  | ¢, |  |
|    |                                            |  |    |  |



### **DESIGN AND TEST**

#### i) **Bridge Rectifier with Capacitor Input Filter**

#### AIM:

To design and test a bridge rectifier with capacitor input filter and determine ripple factor.

#### **APPARATUS REQUIRED:**

Transformer (1), Diodes 1N4007 (4), Resistor 430 Ω (1), Capacitor 102µF (1), Breadboard and CRO.

#### **DIODE SYMBOL:**



#### **PROCEDURE**

- 1. Make the connections as shown in the circuit diagram.
- 2. Apply AC input from the Mains and display the output on CRO.







#### RESULT

#### ii) Zener Voltage Regulator

#### AIM:

To design and test a Zener voltage regulator to determine the line and load regulation characteristics.

#### **APPARATUS REQUIRED:**

Transistor SL 100, Resistor (220  $\Omega$ ), Decade resistance box, Power supply, CRO, Zener diode (1N4736).

#### ZENER DIODE SYMBOL:



#### **PROCEDURE:**

- 1. Make the connections as shown in the figure.
- 2. Set the minimum voltage at the input above the Zener break down voltage.
- 3. For line regulation, vary the input supply and note down the output voltage.
- 4. For load regulation, vary the load resistance and note down the output voltage.
- 5. Calculate the % line and load regulation.



Line Regulation

Load Regulation



#### **TABULAR COLUMN:**

| Line Regu                 | <b>lation:</b> $R_L = 1$          | kΩ       | <b>Load Regulation:</b> $V_i = 15$ V constant |                |            |  |
|---------------------------|-----------------------------------|----------|-----------------------------------------------|----------------|------------|--|
| Sl. No.                   | Vi                                | Vo       | Sl. No.                                       | R <sub>L</sub> | Vo         |  |
| 1                         |                                   |          | 1                                             |                |            |  |
| 2                         |                                   |          | 2                                             |                | $\diamond$ |  |
| 3                         |                                   |          | 3                                             |                |            |  |
| J <b>LT:</b>              |                                   |          |                                               | ~              |            |  |
| High line/l<br>Low line/I | Input DC voltag<br>nput DC voltag | ge<br>ge |                                               | , Ĉ            |            |  |

#### **RESULT:**

- V<sub>HL</sub> = High line/Input DC voltage
- $V_{LL}$  = Low line/Input DC voltage
- $V_{NL} = DC$  output voltage at no load (open circuit)  $V_{FL} = DC$  output voltage at full load ( $R_L = 1 \text{ k}\Omega$ )
- % Line regulation =  $(V_{HL} V_{LL} / V_{LL}) \ge 100$

% Load regulation =  $(V_{NL} - V_{FL} / V_{FL}) \approx 100$ 



#### **DESIGN AND TEST CLIPPER AND CLAMPER CIRCUITS**

#### AIM:

To design clipper and clamper circuits for the given specification and hence to plot the output.

#### **APPARATUS REQUIRED:**

Diode iN4007 (2), Resistor 1 k $\Omega$  (1), Capacitor 1  $\mu$ F (1), CRO, Probes, Breadboard, wires, Power supplies (0-30 V/2A) (2).

#### **PROCEDURE:**

- 1. Make the connections as shown in the circuit diagram.
- 2. Apply sine wave for clippers and square wave for clampers whose amplitude is greater than the clipping and clamping level (Set  $V_f \neq 10V_{p-p}$  and f = 1 kHz).
- 3. Observe the output waveform  $V_0$  in the CRO by keeping ac/dc switch to dc.

R1 21kΩ

M 500u

#### A) Biased Clippers



1N4001G

**∨2** ⊣||

V1 5Vpk 1kHz

**EXPECTED GRAPH:** 





C



CH1 None CH1

None CH1 None CH1 None

CH1/1.57mV

Page 5

Watermarkly



Dept. of ECE, CIT, GUBBI

### i) Negative Biased Clamper:





**EXPECTED GRAPH:** 





**EXPECTED GRAPH: RESULTS:** 

#### **CHARACTERISTICS OF JFET**

#### AIM:

To plot the transfer and drain characteristics of JFET and calculate its drain resistance, mutual conductance and amplification factor.

#### **APPARATUS REQUIRED:**

Power supply (0-30)V, Ammeter (0-30) $\mu$ A, Voltmeter (0-30)V, Bread board, wire, Transistor (NPN) and Resistors 1 k $\Omega$  (2).

#### **PROCEDURE:**

**Drain Characteristics** 

- 1. Make the connections as shown in the circuit diagram.
- 2. Set  $V_{GS}$  and vary  $V_{DS}$  in steps of 0.5 V and note down the corresponding  $I_D$ .
- 3. Repeat step 2 for various values of  $V_{GS}$ .
- 4. Plot the graph:  $V_{DS}$  vs  $I_D$  for constant values of  $V_{GS}$ .
- 5. Find the drain resistance  $R_d = \Delta V_{DS} / \Delta I_D$  with  $V_{QS}$  constant.

#### **Transfer Characteristics**

- 1. Make the connections as shown in the circuit diagram.
- 2. Set  $V_{DS}$  and vary  $V_{GS}$  in steps of 0.5 V and note down the corresponding  $I_D$ .
- 3. Repeat step 2 for various values of  $V_{DS}$ .
- 4. Plot the graph:  $V_{GS}$  vs  $I_D$  for constant values of  $V_{DS}$ .
- 5. Find the transconductance,  $G_m = \Delta I_D / \Delta V_{GS}$  with  $V_{DS}$  constant.

#### CIRCUIT DIAGRAM:





#### TABULAR COLUMN:





#### **CHARACTERISTICS OF n-CHANNEL MOSFET**

#### AIM:

To plot the transfer and drain characteristics of n-channel MOSFET and calculate its drain resistance, mutual conductance and amplification factor.

#### **APPARATUS REQUIRED:**

Power supply (0-30) V, Ammeter (0-100) mA, Voltmeter (0-30) V. Bread board and wires, Transistor.

#### **PROCEDURE:**

**Drain Characteristics** 

- 1. Make the connections as shown in the circuit diagram.
- 2. Set  $V_{GS} = 0$  V and vary  $V_{DS}$  in steps of 0.5 V and note down the corresponding  $I_D$ .
- 3. Repeat the above procedure for  $V_{GS} = -1, -2, -3$  V, for the depletion mode.
- 4. Repeat the above procedure for  $V_{GS} = 1$ , 2, 3 V, for enhancement mode.
- 5. Plot the graph:  $V_{DS}$  vs  $I_D$  for constant values of  $V_{GS}$ .
- 6. Find the drain resistance  $R_d = \Delta V_{DS} / \Delta I_D$  with  $V_{GS}$  constant.

**Transfer Characteristics** 

- 1. Make the connections as shown
- 2. Set  $V_{DS}$  and vary  $V_{GS}$  in steps of 0.5 V and note down the corresponding  $I_D$ .
- 3. Repeat the above procedure for various values of  $V_{DS}$ .
- 4. Plot the graph:  $V_{GS}$  vs  $I_D$  for constant values of  $V_{DS}$ .
- 5. Find the transconductance,  $G_m = \Delta I_D / \Delta V_{GS}$  with  $V_{DS}$  constant.





Dept. of ECE, CIT, GUBBI



### TABULAR COLUMN:

|     | DR                  | AIN CHAF            | TRAN<br>CHARAC                                      | NSFER<br>TERISTCS   |                  |                                      |
|-----|---------------------|---------------------|-----------------------------------------------------|---------------------|------------------|--------------------------------------|
|     | V <sub>GS</sub>     | (V) =               | $\mathbf{V}_{\mathbf{GS}}\left(\mathbf{V}\right) =$ |                     | V                | DS =                                 |
|     | V <sub>DS</sub> (V) | I <sub>D</sub> (mA) | V <sub>DS</sub> (V)                                 | I <sub>D</sub> (mA) | $V_{GS}(V)$      | $I_D(mA)$                            |
|     |                     |                     |                                                     |                     |                  |                                      |
|     |                     |                     |                                                     |                     |                  |                                      |
|     |                     |                     |                                                     |                     |                  |                                      |
|     |                     |                     |                                                     |                     |                  |                                      |
|     |                     |                     |                                                     |                     |                  |                                      |
| EXI | PECTED G            | SRAPH:              |                                                     |                     |                  | $\hat{\mathcal{O}}$                  |
|     | I <sub>DS</sub>     |                     |                                                     | I <sub>DS</sub>     | ∧Ohmic<br>Region | tion Region                          |
|     |                     | -                   |                                                     | I <sub>DSS4</sub>   |                  | V <sub>GS4</sub><br>V <sub>GS3</sub> |
|     |                     |                     |                                                     | -033                | V <sub>Gs</sub>  | ; increases i.e. V <sub>GS</sub> > V |

IDS

IDSS



Vτ

≻V<sub>GS</sub>



V<sub>GS2</sub> V<sub>GS1</sub>

DS

RESULT

#### **DESIGN AND TEST EMITTER FOLLOWER AND DARLINGTON CONNECTION**

#### AIM:

To design and test the Emitter follower circuit and the Darlington connection.

#### **APPARATUS REQUIRED:**

Transistor NPN (2), Resistors, Capacitors, Power supply, CRO.

#### A) Emitter Follower:

#### **DESIGN:**

Let the Q point be  $(V_{ce}, I_c) = (5 \text{ V}, 5 \text{ mA}).$ Let  $\beta = 100$  and  $V_{cc} = 10 \text{ V}.$ 

R<sub>E</sub>:  $V_{RE} = V_{CC}/10 = 10/10 = 1 V$  $I_E R_E = 1 V$  $R_E = 1/I_E = 1/I_C = 1/5mA = 200 \Omega$  (Choose  $R_E = 220 \Omega$ ) R<sub>C</sub>: Applying KVL in CE loop,  $V_{CC} - I_C R_C - V_{CE} - V_{RE} = 0$  $I_C R_C = 10-5-1 = 4$  $R_{C} = 4/I_{C} = 4/5mA = 800 \,\Omega$  (Choose  $R_{C} = 820 \,\Omega$ )  $R_1$ : From the above biasing circuit, 0.7 + 1 = 1.7 V $V_B = V_{BE} +$  $I_C = \beta I_B$  $I_B = 50 \mu A$ Assume  $10I_B$  flows through  $R_1$ ,  $R_1 = V_{CC} - V_B / 10I_B = (10-1.7)/(10 \text{ x } 50 \mu \text{A}) = 16.6 \text{ k}\Omega \text{ (Choose } R_1 = 18 \text{ k}\Omega)$ 

C<sub>E</sub>:

Dept. of ECE, CIT, GUBBI



Let  $X_{CE} = R_E/10$ ;  $1/2\pi f C_E = R_E/10$   $C_E = 10/2\pi f R_E$ At f=100 kHz,  $C_E = 72.34 \ \mu F$  (Choose  $C_E = 100 \ \mu F$ ) Choose  $C_1 = C_2 = 0.1 \ \mu F$ 

#### **CIRCUIT DIAGRAM:**



#### **PROCEDURE:**

- 1. Make the connections as shown in the circuit diagram.
- 2. Keep the input signal amplitude slightly less than the maximum signal handling capacity.
- 3. Observe the output



#### **B)** Darlington Connection:

#### **DESIGN:**

Let  $V_{CC} = 12 \text{ V}$ ,  $I_{C2} = I_{C1} = 5 \text{ mA} = I_{E2}$ ,  $\beta = 100$ . Choose  $V_{CE2} = V_{CC}/2 = 6 V = V_{E2} = I_E R_E$  $R_E = 6/5mA = 1.2 \text{ k}\Omega$  $V_{B1} = V_{BE1} + V_{BE2} + V_{E2} = 0.7 + 0.7 + 6 = 7.4 \ V$  $I_{B2} = I_C / \beta = I_{B2} / \beta = 0.0005 \text{ mA}$  $V_{B1} = 7.4 = V_{CC}R_2/[R_1+R_2]$ Let  $R_2 = 1.5 \text{ M}\Omega$ . Calculating, we get  $R_1 = 932.4 \text{ k}\Omega$  (Choose 1 M $\Omega$ ) Assume  $C_{C1} = C_{C2} = 0.47 \ \mu F$ 

#### **CIRCUIT DIAGRAM:**



#### **PROCEDURE:**

- 1. Make the connections as shown in the circuit diagram.
- 2. Apply a sinusoidal voltage of small amplitude (say 1 V).
- Observe the output. 3.

# **EXPECTED GRAPH:**

#### **RESULT:**



#### FREQUENCY RESPONSE OF COMMON SOURCE JFET/MOSFET AMPLIFIER

#### AIM:

To obtain the frequency response of a common source JFET/MOSFET amplifier.

#### **APPARATUS REQUIRED:**

FET BFW 10, Resistors 2.2 M $\Omega$ , 1 k $\Omega$ , 2.7 k $\Omega$ , Capacitor 0.1  $\mu$ F, 47  $\mu$ F, Power supply, AFO, CRO.

#### **PROCEDURE:**

- 1. Make the connections as shown in the circuit diagram.
- 2. Keep the input signal amplitude slightly less than maximum signal handling capacity. (Max signal handling capacity is the input voltage at which output gets clipped)
- 3. Vary the frequency and note down the output up to 1 MHz.
- 4. Plot the frequency response on semi log sheet.



 $\Diamond$ 

**Frequency Response:** 



#### COMPARATOR WITH ZERO AND NON-ZERO REFERENCE

#### AIM:

To design and test a comparator circuit with zero and non-zero reference using op-amp and to obtain the Hysteresis curve.

#### **APPARATUS REQUIRED:**

741 op-amp IC, Power supply, Resistors

#### **PROCEDURE:**

- 1. Make the connections as shown in the circuit diagram.
- 2. Set the input signal to sine wave with amplitude 1 V(p-p) and frequency 1 kHz.
- 3. Observe the output waveforms.





**B)** Comparator with non-zero reference:





Dept. of ECE, CIT, GUBBI



### FULL-WAVE CONTROLLED RECTIFIER USIGNG RC TRIGGERING CIRUIT

#### AIM:

To design and test a full-wave controlled rectifier using RC triggering circuit.

#### **APPARATUS REQUIRED:**

RC firing circuit module, CRO, patch chords.

#### **PROCEDURE:**

- 1. Make the connections as shown in the circuit diagram.
- 2. Connect a rheostat of  $100 \Omega$  between the load points.
- 3. Vary the control pot and observe the voltage waveforms across the load and SCR at different points of the circuit and also note down the SCR firing angle.
- 4. Draw the waveforms across the load and Thyristor for different firing angle.



## TABULAR COLUMN:

|                   | $\bigcirc$    |              |              |             |
|-------------------|---------------|--------------|--------------|-------------|
|                   | Time (in sec) | Firing angle | Load voltage | SCR voltage |
| $\langle \rangle$ |               |              |              |             |
|                   |               |              |              |             |
| $\checkmark$      |               |              |              |             |
|                   |               |              |              |             |
|                   |               |              |              |             |
|                   |               |              |              |             |
|                   |               |              |              |             |
|                   |               |              |              |             |
|                   |               |              |              |             |





Dept. of ECE, CIT, GUBBI



### PRECISION HALF-WAVE AND FULL-WAVE RECTIFIERS USING OP-AMPS

#### AIM:

To design and test the precision half wave and full wave rectifiers using op-amps.

#### (A) Precision Half Wave Rectifier:

#### **DESIGN:**

 $ChooseR_{F}=10R_{1}, gain = R_{F}/R_{1}=10$ If Vi =0.5V<sub>p-p</sub>thenVo =-5Vp-pLetR\_{1}=1K, then R\_{F}=10 K

#### **PROCEDURE:**

- 1. Make the connections as shown in the circuit diagram.
- 2. Observe the output waveform and measure the output frequency.



(B) Precision Full Wave Rectifier:

#### **DESIGN:**

Choose  $R_1 = R_2 = R_3 = R_4 = R = 1K\Omega R_5 = R/2 = 500\Omega$ . Choose  $R_5 = 470\Omega$ 

#### **PROCEDURE:**

- 1. Make the connections as shown in the circuit diagram.
- 2. Observe the output waveform and measure the output frequency.

#### **CIRCUIT DIAGRAM:**



Experiment No. 10

**RC PHASE SHIFT OSCILLATOR** 

Dept. of ECE, CIT, GUBBI



 $\Diamond$ 

### AIM:

To design and test the RC phase shift oscillator and determine the frequency of oscillation.

### **DESIGN:**

 $R_1=R_2=R_3=R_6=12$ kand $A_{CL}=29$ Find  $R_4=A_{CL}*R1$   $R_5=1k,f=500$ Hz  $f=1/2\pi RC\sqrt{6C}$ alculate  $C=1/2\pi Rf\sqrt{6}$ 

### **PROCEDURE:**

- 1. Make the connections as shown in the circuit diagram.
- 2. Observe the output waveform and measure the output frequency



**RESULT:** 

