
QMP 7.1 D/F

Channabasaveshwara Institute of Technology
(Affiliated to VTU, Belagavi & Approved by AICTE, New Delhi)

 (NAAC Accredited & ISO 9001:2015 Certified Institution)
 NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka.

Department of Artificial Intelligence

and Data Science

ARTIFICIAL INTELLIGENCE

BAD402
 (CBCS SCHEME)

B.E - IV Semester

Lab Manual 2023-24

Name:

USN:

Batch: Section:

QMP 7.1 D/F .

Channabasaveshwara Institute of Technology
(Affiliated to VTU, Belagavi & Approved by AICTE, New Delhi)

(NAAC Accredited & ISO 9001:2015 Certified Institution)
NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka.

Department of Artificial Intelligence

and Data Science

ARTIFICIAL INTELLIGENCE

BAD402
 (PRACTICAL COMPONENT OF IPCC)

Prepared by:

Mrs. Tejaswini S

Assistant Professor

AD Department

.

 Department of Artificial Intelligence & Data Science

SYLLABUS

ARTIFICIAL INTELLIGENCE

PRACTICAL COMPONENT OF IPCC

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER – IV (AD)

Subject Code: BAD402 CIE Marks: 25

Hours/ Week : 02 (02 Hours Laboratory) Test Hours: 03

Using suitable simulation software, demonstrate the operation of the following programs:

 Sl.No Experiments

1. Implement and Demonstrate Depth First Search Algorithm on Water Jug Problem

2. Implement and Demonstrate Best First Search Algorithm on Missionaries-Cannibals

Problems using Python

3. Implement A* Search algorithm

4. Implement AO* Search algorithm

5. Solve 8-Queens Problem with suitable assumptions

6. Implementation of TSP using heuristic approach

7. Implementation of the problem solving strategies: either using Forward Chaining or

Backward Chaining

8. Implement resolution principle on FOPL related problems

9. Implement Tic-Tac-Toe game using Python

10. Build a bot which provides all the information related to text in search box

11. Implement any Game and demonstrate the Game playing strategies

CIE for the practical component of the IPCC

 15 marks for the conduction of the experiment and preparation of laboratory record, and 10

marks for the test to be conducted after the completion of all the laboratory sessions.

 On completion of every experiment/program in the laboratory, the students shall be evaluated

including viva-voce and marks shall be awarded on the same day.

 The CIE marks awarded in the case of the Practical component shall be based on the continuous

evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks

of all experiments write-ups are added and scaled down to 15 marks.

 The laboratory test (duration 02/03 hours) after completion of all the experiments shall be

conducted for 50 marks and scaled down to 10 marks.

 Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory

component of IPCC for 25 marks.

 The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of

the IPCC.

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 4

General Instructions to Students

1. Students should come with thorough preparation for the experiment to be

conducted.

2. Students should take prior permission from the concerned faculty before

availing the leave.

3. Students should come with formals and to be present on time in the laboratory.

4. Students will not be permitted to attend the laboratory unless they bring the

practical record fully completed in all respects pertaining to the experiments

conducted in the previous session.

5. Students will be permitted to attend the laboratory unless they bring the

observation book fully completed in all respects pertaining to the

experiments conducted in the present session.

6. They should obtain the signature of the staff-in –charge in the observation

book after completing each experiment.

7. Practical record should be neatly maintained.

8. Ask lab Instructor for assistance for any problem.

9. Do not download or install software without the assistance of laboratory

Instructor.

10. Do not alter the configuration of system.

11. Turn off the systems after use.

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 5

Program 1

Implement and Demonstrate Depth First Search Algorithm on

Water Jug Problem

Theory:
There are two jugs of volume A litre and B litre. Neither has any measuring mark on it.There is a pump that can

be used to fill the jugs with water. How can you get exactly x litre of water into the A litre jug. Assuming that we

have unlimited supply of water.

Note: Let's assume we have A=4 litre and B= 3 litre jugs. And we want exactly 2 Litre water into jug A (i.e. 4

litre jug) how we will do this.

The state space for this problem can be described as the set of ordered pairs of integers (x, y)

Where, x represents the quantity of water in the 4-gallon jug x= 0,1,2,3,4

y represents the quantity of water in 3-gallon jug y=0,1,2,3

Start State: (0,0)

Goal State: (2,0)

Generate production rules for the water jug problem

We basically perform three operations to achieve the goal.

1. Fill water jug.

2. Empty water jug

3. Transfer water jug

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 6

Production Rules:

Rule

State

Process

1 (X,Y | X<4) (4,Y)

{Fill 4-gallon jug}

2 (X,Y |Y<3) (X,3)

{Fill 3-gallon jug}

3 (X,Y |X>0) (0,Y)

{Empty 4-gallon jug}

4 (X,Y | Y>0) (X,0)

{Empty 3-gallon jug}

5 (X,Y | X+Y>=4 ^ Y>0) (4,Y-(4-X))

{Pour water from 3-gallon jug into 4-

gallon jug until 4-gallon jug is full}

6 (X,Y | X+Y>=3 ^X>0) (X-(3-Y),3)

{Pour water from 4-gallon jug into 3-

gallon jug until 3-gallon jug is full}

7 (X,Y | X+Y<=4 ^Y>0) (X+Y,0)

{Pour all water from 3-gallon jug into 4-

gallon jug}

8 (X,Y | X+Y <=3^ X>0) (0,X+Y)

{Pour all water from 4-gallon jug into 3-

gallon jug}

9 (0,2) (2,0)

{Pour 2 gallon water from 3 gallon jug

into 4 gallon jug}

Initialization:

Start State: (0,0)

Apply Rule 2:

(X,Y | Y<3) ->

(X,3)

{Fill 3-gallon jug}

Now the state is (X,3)

Iteration 1:

Current State: (X,3)

Apply Rule 7:

(X,Y | X+Y<=4 ^Y>0)

(X+Y,0)

{Pour all water from 3-gallon jug into 4-gallon jug}

Now the state is (3,0)

Iteration 2:

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 7

Current State : (3,0)

Apply Rule 2:

(X,Y | Y<3) ->

(3,3)

{Fill 3-gallon jug}

Now the state is (3,3)

Iteration 3:

Current State:(3,3)

Apply Rule 5:

(X,Y | X+Y>=4 ^ Y>0)

(4,Y-(4-X))

{Pour water from 3-gallon jug into 4-gallon jug until 4-gallon jug is full}

Now the state is (4,2)

Iteration 4:

Current State : (4,2)

Apply Rule 3:

(X,Y | X>0)

(0,Y)

{Empty 4-gallon jug}

Now state is (0,2)

Iteration 5:

Current State : (0,2)

Apply Rule 9:

(0,2)

(2,0)

{Pour 2 gallon water from 3 gallon jug into 4 gallon jug}

Now the state is (2,0)

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 8

 Program:

Result:

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 9

Program 2

Implement and Demonstrate Best First Search Algorithm on

Missionaries-Cannibals Problems using Python.

Theory:

 Three missionaries and three cannibals wish to cross the river.

 They have a small boat that will carry up to two people.

 Everyone can navigate the boat.

 If at any time the cannibals outnumber the missionaries on bank of the river, they will eat the

missionaries.

 Goal is to get everyone across the river without the missionaries risking being eaten by cannibals.

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 10

Program:

#Python program to illustrate Missionaries & cannibals Problem

print("\n")

print("\tGame Start\nNow the task is to move all of them to right side of the river")

print('''rules:\n1. The boat can carry at most two people\n2. If cannibals num greater than missionaries

then the cannibals would eat the missionaries\n3. The boat cannot cross the river by itself with no people

on board''')

lM = 3 #lM = Left side Missionaries number

lC = 3 #lC = Left side Cannibals number

rM=0 #rM = Right side Missionaries number

rC=0 #rC = Right side cannibals number

userM = 0 #userM = User input for number of missionaries for right to left side travel

userC = 0 #userC = User input for number of cannibals for right to left travel

k = 0

print("\nM M M C C C | --- | \n")

try:

 while(True):

 while(True):

 print("Left side -> right side river travel")

 #uM = user input for number of missionaries for left to right travel

 #uC = user input for number of cannibals for left to right travel

 uM = int(input("Enter number of Missionaries travel => "))

 uC = int(input("Enter number of Cannibals travel => "))

 if((uM==0)and(uC==0)):

 print("Empty travel not possible")

 print("Re-enter : ")

 elif(((uM+uC) <= 2)and((lM-uM)>=0)and((lC-uC)>=0)):

 break

 else:

 print("Wrong input re-enter : ")

 lM = (lM-uM)

 lC = (lC-uC)

 rM += uM

 rC += uC

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 11

 print("\n")

 for i in range(0,lM):

 print("M ",end="")

 for i in range(0,lC):

 print("C ",end="")

 print("| --> | ",end="")

 for i in range(0,rM):

 print("M ",end="")

 for i in range(0,rC):

 print("C ",end="")

 print("\n")

 k +=1

 if(((lC==3)and (lM ==1)) or ((lC==3)and(lM==2)) or((lC==2)and(lM==1))

or((rC==3)and (rM == 1)) or ((rC==3)and(rM==2)) or ((rC==2)and(rM==1))):

 print("Cannibals eat missionaries:\nYou lost the game")

 break

 if((rM+rC) == 6):

 print("You won the game : \n\tCongrats")

 print("Total attempt")

 print(k)

 break

 while(True):

 print("Right side -> Left side river travel")

 userM = int(input("Enter number of Missionaries travel => "))

 userC = int(input("Enter number of Cannibals travel => "))

 if((userM==0)and(userC==0)):

 print("Empty travel not possible")

 print("Re-enter : ")

 elif(((userM+userC) <= 2)and((rM-userM)>=0)and((rC-userC)>=0)):

 break

 else:

 print("Wrong input re-enter : ")

 lM += userM

 lC += userC

 rM -= userM

 rC -= userC

 k +=1

 print("\n")

 for i in range(0,lM):

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 12

 print("M ",end="")

 for i in range(0,lC):

 print("C ",end="")

 print("| <-- | ",end="")

 for i in range(0,rM):

 print("M ",end="")

 for i in range(0,rC):

 print("C ",end="")

 print("\n")

 if(((lC==3)and (lM == 1)) or ((lC==3)and(lM==2)) or((lC==2)and(lM==1))or

((rC==3)and (rM == 1)) or ((rC==3)and(rM==2)) or ((rC==2)and(rM==1))):

 print("Cannibals eat missionaries:\nYou lost the game")

 break

except EOFError as e:

 print("\nInvalid input please retry !!")

Result:

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 13

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 14

Program 3

Implement A* Search algorithm

A* Search Algorithm and Its Basic Concepts

A* algorithm works based on heuristic methods, and this helps achieve optimality. A* is a different
form of the best-first algorithm. Optimality empowers an algorithm to find the best possible solution

to a problem. Such algorithms also offer completeness; if there is any solution possible to an

existing problem, the algorithm will definitely find it.

When A* enters into a problem, firstly, it calculates the cost to travel to the neighboring nodes and

chooses the node with the lowest cost. If The f(n) denotes the cost, A* chooses the node with the
lowest f(n) value. Here ‘n’ denotes the neighboring nodes. The calculation of the value can be done

as shown below:

f(n)=g(n)+h(n)f(n)=g(n)+h(n)
g(n) = shows the shortest path’s value from the starting node to node n

h(n) = The heuristic approximation of the value of the node

The heuristic value has an important role in the efficiency of the A* algorithm. To find the best
solution, you might have to use different heuristic functions according to the type of the problem.

However, the creation of these functions is a difficult task, and this is the basic problem we face in
AI.

What is a Heuristic Function?

A heuristic is simply called a heuristic function that helps rank the alternatives given in a search

algorithm at each of its steps. It can either produce a result on its own or work in conjugation with a
given algorithm to create a result. Essentially, a heuristic function helps algorithms to make the best

decision faster and more efficiently. This ranking is based on the best available information and

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 15

helps the algorithm decide the best possible branch to follow. Admissibility and consistency are the

two fundamental properties of a heuristic function.

Admissibility of the Heuristic Function

A heuristic function is admissible if it can effectively estimate the real distance between a node
‘n’ and the end node. It never overestimates; if it ever does, it will be denoted by ‘d’, which also

denotes the accuracy of the solution.

Consistency of the Heuristic Function

A heuristic function is consistent if the estimate of a given heuristic function turns out to be equal to

or less than the distance between the goal (n) and a neighbor and the cost calculated to reach that
neighbor.

A* is indeed a very powerful algorithm used to increase the performance of artificial intelligence. It

is one of the most popular search algorithms in AI. The sky is the limit when it comes to the
potential of this algorithm. However, the efficiency of an A* algorithm highly depends on the

quality of its heuristic function. Wonder why this algorithm is preferred and used in many software
systems? There is no single facet of AI where the A*algorithm has not found its application. From

search optimization to games, robotics, and machine learning, the A* algorithm is an inevitable part

of a smart program.

Implementation with Python

In this section, we are going to find out how the A* search algorithm can be used to find the most
cost-effective path in a graph. Consider the following graph below.

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 16

The numbers written on edges represent the distance between the nodes, while the numbers written

on nodes represent the heuristic values. Let us find the most cost-effective path to reach from start
state A to final state G using the A* Algorithm.

Let’s start with node A. Since A is a starting node, therefore, the value of g(x) for A is zero, and
from the graph, we get the heuristic value of A is 11, therefore

g(x) + h(x) = f(x)

0+ 11 =11

Thus for A, we can write

A=11

Now from A, we can go to point B or point E, so we compute f(x) for each of them

A → B = 2 + 6 = 8

A → E = 3 + 6 = 9

Since the cost for A → B is less, we move forward with this path and compute the f(x) for the

children nodes of B

Since there is no path between C and G, the heuristic cost is set to infinity or a very high value

A → B → C = (2 + 1) + 99= 102

A → B → G = (2 + 9) + 0 = 11

Here the path A → B → G has the least cost but it is still more than the cost of A → E, thus we
explore this path further

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 17

A → E → D = (3 + 6) + 1 = 10

Comparing the cost of A → E → D with all the paths we got so far and as this cost is least of all we
move forward with this path. And compute the f(x) for the children of D

A → E → D → G = (3 + 6 + 1) +0 =10

Now comparing all the paths that lead us to the goal, we conclude that A → E → D → G is the most

cost-effective path to get from A to G.

Next, we write a program in Python that can find the most cost-effective path by using the a-star

algorithm.

First, we create two sets, viz- open and close. The open contains the nodes that have been visited,

but their neighbors are yet to be explored. On the other hand, close contains nodes that, along with
their neighbors, have been visited.

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 18

Program:

def aStarAlgo(start_node, stop_node):

 open_set = set(start_node)

 closed_set = set()

 g = {} #store distance from starting node

 parents = {} # parents contains an adjacency map of all nodes

 #distance of starting node from itself is zero

 g[start_node] = 0

 #start_node is root node i.e it has no parent nodes so start_node is set to its own parent node

 parents[start_node] = start_node

 while len(open_set) > 0:

 n = None

 #node with lowest f() is found

 for v in open_set:

 if n == None or g[v] + heuristic(v) < g[n] + heuristic(n):

 n = v

 if n == stop_node or Graph_nodes[n] == None:

 pass

 else:

 for (m, weight) in get_neighbors(n):

 #nodes 'm' not in first and last set are added to first n is set its parent

 if m not in open_set and m not in closed_set:

 open_set.add(m)

 parents[m] = n

 g[m] = g[n] + weight

 #for each node m,compare its distance from start i.e g(m) to the from start through n node

 else:

 if g[m] > g[n] + weight:

 #update g(m)

 g[m] = g[n] + weight

 #change parent of m to n

 parents[m] = n

 #if m in closed set,remove and add to open

 if m in closed_set:

 closed_set.remove(m)

 open_set.add(m)

 if n == None:

 print('Path does not exist!')

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 19

 return None

 # if the current node is the stop_node then we begin reconstructin the path from it to the start_node

 if n == stop_node:

 path = []

 while parents[n] != n:

 path.append(n)

 n = parents[n]

 path.append(start_node)

 path.reverse()

 print('Path found: {}'.format(path))

 return path

 # remove n from the open_list, and add it to closed_list because all of his neighbors were inspected

 open_set.remove(n)

 closed_set.add(n)

 print('Path does not exist!')

 return None

 #define fuction to return neighbor and its distance from the passed node

def get_neighbors(v):

 if v in Graph_nodes:

 return Graph_nodes[v]

 else:

 return None

#for simplicity we ll consider heuristic distances given and this function returns heuristic distance for all nodes

def heuristic(n):

 H_dist = {'A': 11,'B': 6,'C': 99,'D': 1,'E': 7,'G': 0,}

 return H_dist[n]

 # Describe your graph here

Graph_nodes = {'A': [('B', 2), ('E', 3)], 'B': [('C', 1),('G', 9)], 'C': None,'E': [('D', 6)],'D': [('G', 1)],}

aStarAlgo('A', 'G')

Result:

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 20

Program 4

Implement AO* Search algorithm

The AO* algorithm, short for "Anytime Optimistic" algorithm.

Best-first search is what the AO* algorithm does. The AO* method divides any given difficult problem into a

smaller group of problems that are then resolved using the AND-OR graph concept. AND OR graphs are

specialized graphs that are used in problems that can be divided into smaller problems. The AND side of the

graph represents a set of tasks that must be completed to achieve the main goal, while the OR side of the graph

represents different methods for accomplishing the same main goal.

In the above figure, the buying of a car may be broken down into smaller problems or tasks that can be

accomplished to achieve the main goal in the above figure, which is an example of a simple AND-OR graph.

The other task is to either steal a car that will help us accomplish the main goal or use your own money to

purchase a car that will accomplish the main goal. The AND symbol is used to indicate the AND part of the

graphs, which refers to the need that all sub problems containing the AND to be resolved before the preceding

node or issue may be finished.

The start state and the target state are already known in the knowledge-based search strategy known as

the AO* algorithm, and the best path is identified by heuristics. The informed search technique considerably

reduces the algorithm’s time complexity. The AO* algorithm is far more effective in searching AND-OR

trees than the A* algorithm.

Working of AO* algorithm:
The evaluation function in AO* looks like this:

f(n) = g(n) + h(n)

f(n) = Actual cost + Estimated cost
here,

 f(n) = The actual cost of traversal.

 g(n) = the cost from the initial node to the current node.

 h(n) = estimated cost from the current node to the goal state.

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 21

Difference between the A* Algorithm and AO* algorithm

 A* algorithm and AO* algorithm both works on the best first search.

 They are both informed search and works on given heuristics values.

 A* always gives the optimal solution but AO* doesn’t guarantee to give the optimal solution.

 Once AO* got a solution doesn’t explore all possible paths but A* explores all paths.

 When compared to the A* algorithm, the AO* algorithm uses less memory.

 opposite to the A* algorithm, the AO* algorithm cannot go into an endless loop.

Real-Life Applications of AO* algorithm:

Vehicle Routing Problem:

The vehicle routing problem is determining the shortest routes for a fleet of vehicles to visit a set

of customers and return to the depot, while minimizing the total distance traveled and the total
time taken. The AO* algorithm can be used to find the optimal routes that satisfy both objectives.

Portfolio Optimization:

Portfolio optimization is choosing a set of investments that maximize returns while minimizing
risks. The AO* algorithm can be used to find the optimal portfolio that satisfies both objectives,

such as maximizing the expected return and minimizing the standard deviation.

Program:

class Graph:

 def __init__(self, graph_dict=None, heuristic=None):

 self.graph = graph_dict or {}

 self.heuristic = heuristic or {}

 def get_neighbors(self, node):

 return self.graph.get(node, [])

 def get_heuristic(self, node):

 return self.heuristic.get(node, float('inf'))

def ao_star(graph, start):

 open_list = set([start])

 closed_list = set()

 solution_graph = {}

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 22

 def recur_ao_star(node):

 if node in closed_list:

 return solution_graph[node]

 neighbors = graph.get_neighbors(node)

 if not neighbors:

 solution_graph[node] = (0, None)

 closed_list.add(node)

 return solution_graph[node]

 min_cost = float('inf')

 best_path = None

 for path, cost in neighbors:

 total_cost = cost

 sub_path = []

 for sub_node in path:

 sub_cost, _ = recur_ao_star(sub_node)

 total_cost += sub_cost

 sub_path.append(sub_node)

 if total_cost < min_cost:

 min_cost = total_cost

 best_path = sub_path

 solution_graph[node] = (min_cost, best_path)

 closed_list.add(node)

 return solution_graph[node]

 recur_ao_star(start)

 return solution_graph

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 23

Example usage

if __name__ == "__main__":

 graph = {

 'A': [(['B', 'C'], 1), (['D'], 5)],

 'B': [(['E'], 3)],

 'C': [(['E'], 1)],

 'D': [(['G'], 2)],

 'E': [(['G'], 5)],

 'G': []

 }

 heuristic = {

 'A': 6,

 'B': 2,

 'C': 2,

 'D': 4,

 'E': 0,

 'G': 0

 }

 g = Graph(graph, heuristic)

 solution = ao_star(g, 'A')

 print("Solution Graph:")

 for node, (cost, path) in solution.items():

 print(f"Node: {node}, Cost: {cost}, Path: {path}")

Result:

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 24

Program 5

Solve 8-Queens Problem with suitable assumptions

Program:

Result:

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 25

Program 6

Implementation of TSP using heuristic approach

Algorithm for Traveling Salesman Problem

We will use the dynamic programming approach to solve the Travelling Salesman Problem (TSP).

Before starting the algorithm, let’s get acquainted with some terminologies:

 A graph G=(V, E), which is a set of vertices and edges.

 V is the set of vertices.

 E is the set of edges.

 Vertices are connected through edges.

 Dist(i,j) denotes the non-negative distance between two vertices, i and j.

Let’s assume S is the subset of cities and belongs to {1, 2, 3, …, n} where 1, 2, 3…n are the cities and i, j are two

cities in that subset. Now cost(i, S, j) is defined in such a way as the length of the shortest path visiting node in S,

which is exactly once having the starting and ending point as i and j respectively.

For example, cost (1, {2, 3, 4}, 1) denotes the length of the shortest path where:

 Starting city is 1

 Cities 2, 3, and 4 are visited only once

 The ending point is 1

The dynamic programming algorithm would be:

 Set cost(i, , i) = 0, which means we start and end at i, and the cost is 0.

 When |S| > 1, we define cost(i, S, 1) = ∝ where i !=1 . Because initially, we do not know the exact cost to

reach city i to city 1 through other cities.

 Now, we need to start at 1 and complete the tour. We need to select the next city in such a way-

cost(i, S, j)=min cost (i, S−{i}, j)+dist(i,j) where i∈S and i≠j

For the given figure, the adjacency matrix would be the following:

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 26

dist(i,j) 1 2 3 4

1 0 10 15 20

2 10 0 35 25

3 15 35 0 30

4 20 25 30 0

Let’s see how our algorithm works:

Step 1) We are considering our journey starting at city 1, visit other cities once and return to city 1.

Step 2) S is the subset of cities. According to our algorithm, for all |S| > 1, we will set the distance cost(i, S, 1) =

∝. Here cost(i, S, j) means we are starting at city i, visiting the cities of S once, and now we are at city j. We set
this path cost as infinity because we do not know the distance yet. So the values will be the following:

Cost (2, {3, 4}, 1) = ∝ ; the notation denotes we are starting at city 2, going through cities 3, 4, and reaching 1.

And the path cost is infinity. Similarly-

cost(3, {2, 4}, 1) = ∝

cost(4, {2, 3}, 1) = ∝

Step 3) Now, for all subsets of S, we need to find the following:

cost(i, S, j)=min cost (i, S−{i}, j)+dist(i,j), where j∈S and i≠j

That means the minimum cost path for starting at i, going through the subset of cities once, and returning to city

j. Considering that the journey starts at city 1, the optimal path cost would be= cost(1, {other cities}, 1).

Let’s find out how we could achieve that:

Now S = {1, 2, 3, 4}. There are four elements. Hence the number of subsets will be 2^4 or 16. Those subsets are-

1) |S| = Null:

{Φ}

2) |S| = 1:

{{1}, {2}, {3}, {4}}

3) |S| = 2:

{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

4) |S| = 3:

{{1, 2, 3}, {1, 2, 4}, {2, 3, 4}, {1, 3, 4}}

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 27

5) |S| = 4:

{{1, 2, 3, 4}}

As we are starting at 1, we could discard the subsets containing city 1.

The algorithm calculation:

1) |S| = Φ:

cost (2, Φ, 1) = dist(2, 1) = 10

cost (3, Φ, 1) = dist(3, 1) = 15

cost (4, Φ, 1) = dist(4, 1) = 20

2) |S| = 1:

cost (2, {3}, 1) = dist(2, 3) + cost (3, Φ, 1) = 35+15 = 50

cost (2, {4}, 1) = dist(2, 4) + cost (4, Φ, 1) = 25+20 = 45

cost (3, {2}, 1) = dist(3, 2) + cost (2, Φ, 1) = 35+10 = 45

cost (3, {4}, 1) = dist(3, 4) + cost (4, Φ, 1) = 30+20 = 50

cost (4, {2}, 1) = dist(4, 2) + cost (2, Φ, 1) = 25+10 = 35

cost (4, {3}, 1) = dist(4, 3) + cost (3, Φ, 1) = 30+15 = 45

3) |S| = 2:

cost (2, {3, 4}, 1) = min [dist[2,3]+Cost(3,{4},1) = 35+50 = 85,

dist[2,4]+Cost(4,{3},1) = 25+45 = 70] = 70

cost (3, {2, 4}, 1) = min [dist[3,2]+Cost(2,{4},1) = 35+45 = 80,

dist[3,4]+Cost(4,{2},1) = 30+35 = 65] = 65

cost (4, {2, 3}, 1) = min [dist[4,2]+Cost(2,{3},1) = 25+50 = 75

dist[4,3]+Cost(3,{2},1) = 30+45 = 75] = 75

4) |S| = 3:

cost (1, {2, 3, 4}, 1) = min [dist[1,2]+Cost(2,{3,4},1) = 10+70 = 80

dist[1,3]+Cost(3,{2,4},1) = 15+65 = 80

dist[1,4]+Cost(4,{2,3},1) = 20+75 = 95] = 80

So the optimal solution would be 1-2-4-3-1

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 28

Output of Given Graph:

Minimum weight Hamiltonian Cycle:

10 + 25 + 30 + 15:= 80

Program:

Result:

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 29

Program 7

Implementation of the problem solving strategies: either using

Forward Chaining or Backward Chaining

Let’s implement both Forward Chaining and Backward Chaining with a specific example to

illustrate how these strategies work.

Let's set up a simple knowledge base containing logical rules and facts related to animal

classification. We'll implement both forward chaining and backward chaining to determine

whether a given animal is classified as a mammal or bird based on the provided rules.

Knowledge Base

We'll define a set of rules and facts:

 Facts:

o has_fur(tiger)

o has_feathers(penguin)

o lays_eggs(penguin)

o lays_eggs(sparrow)

o has_fur(cat)

 Rules:

o If an animal has fur, it is a mammal.

o If an animal has feathers and lays eggs, it is a bird.

Forward Chaining

Let's implement forward chaining to classify animals.

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 30

Output:

Backward Chaining

Now, let's implement backward chaining to classify animals.

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 31

Output:

Explanation

 Forward Chaining: Starts with initial facts and iteratively applies rules to derive new facts. In the

provided example, it will derive that tiger and cat are mammals and penguin and sparrow are

birds based on the given rules and initial facts.

 Backward Chaining: Starts with the goal and checks if it can be derived from the facts. It recursively

checks the antecedents of each rule to see if they can be satisfied by the initial facts. In the provided

example, it will check if the given goals (mammal(tiger), bird(penguin), bird(sparrow),

mammal(cat)) can be derived from the initial facts and rules.

These implementations demonstrate how forward and backward chaining can be used to classify animals based

on a set of rules and initial facts in Python.

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 32

Program 8

Implement resolution principle on FOPL related problems

Output:

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 33

Explanation

1. Negation Function: The negation function handles negating a literal by checking if it

starts with ~ and appropriately removing or adding it.

2. Resolve Function: The resolve function takes two clauses, finds complementary literals,

and removes them to produce resolvents.

3. Resolve All Function: The resolve_all function generates all possible resolvents from the

current set of clauses.

4. Resolution Function: The resolution function uses a loop to continuously generate new

resolvents until no more new clauses are found or an empty clause is found (indicating

unsatisfiability).

This implementation reads the knowledge base, parses it into individual clauses, and then

performs resolution to determine if the knowledge base is satisfiable. The example knowledge

base provided will be processed, and the result will be printed as either "Satisfiable" or

"Unsatisfiable".

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 34

Program 9

Implement Tic-Tac-Toe game using Python

Program:

theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ', 'mid-L': ' ', 'mid-M': ' ', 'mid-R': ' ', 'low-L': ' ', 'low-M': ' ', 'low-R': '

'}

def printBoard(board):

 print(board['top-L'] + '|' + board['top-M'] + '|' + board['top-R'])

 print('-+-+-')

 print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R'])

 print('-+-+-')

 print(board['low-L'] + '|' + board['low-M'] + '|' + board['low-R'])

turn = 'X'

for i in range(9):

 printBoard(theBoard)

 print('Turn for ' + turn + '. Move on which space?')

 move = input()

 theBoard[move] = turn

 if turn == 'X':

 turn = 'O'

 else:

 turn = 'X'

printBoard(theBoard)

Output:

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 35

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 36

Another way:

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 37

Output:

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 38

Program 10

Build a bot which provides all the information related to text in search box

Theory:

The bot performs a Google search based on the user's input and retrieves the search results. You can extend this

code further to include more advanced features such as processing the search results for specific types of

information, implementing natural language processing for understanding user queries better, and integrating

with other APIs for additional functionalities.

To see the results of the above program, you can simply run the script in your Python environment and follow

the instructions. Here's how you can do it:

 Copy the provided code into a Python file (e.g., search_bot.py).

 Save the file.

 Open a terminal or command prompt.

 Navigate to the directory where you saved the Python file.

 Run the Python script by typing python search_bot.py and pressing Enter.

 The program will prompt you to enter a search query. Type your query and press Enter.

 The program will then fetch the search results from Google and display them in the terminal.

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 39

Program:

Output:

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 40

Program 11

Implement any Game and demonstrate the Game playing strategies

Program:

import random

class GuessTheNumberGame:

 def __init__(self, max_attempts=5, min_num=1, max_num=100):

 self.min_num = min_num

 self.max_num = max_num

 self.secret_number = random.randint(min_num, max_num)

 self.max_attempts = max_attempts

 self.attempts = 0

 def play(self):

 print("Welcome to Guess the Number Game!")

 print(f"I'm thinking of a number between {self.min_num} and {self.max_num}.")

 while self.attempts < self.max_attempts:

 guess = self.get_guess()

 if guess == self.secret_number:

 print(f"Congratulations! You guessed the number {self.secret_number} correctly!")

 break

 elif guess < self.secret_number:

 print("Too low! Try again.")

 else:

 print("Too high! Try again.")

 self.attempts += 1

 else:

 print(f"Sorry, you've run out of attempts! The correct number was {self.secret_number}.")

 def get_guess(self):

 while True:

 try:

 guess = int(input(f"Guess the number ({self.min_num} - {self.max_num}): "))

 if self.min_num <= guess <= self.max_num:

 return guess

 else:

 print(f"Please enter a number between {self.min_num} and {self.max_num}.")

 except ValueError:

 print("Please enter a valid number.")

Demonstration

if __name__ == "__main__":

 game = GuessTheNumberGame()

 game.play()

Python Laboratory
(21EC32)

2023-24

Dept. of AD, CIT, Gubbi 41

Result:
Output 1:

Output 2:

