

QMP 7.1 D/F

Channabasaveshwara Institute of Technology
(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi)

(ISO 9001:2015 Certified Institution)

NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka.

Department of Artificial Intelligence and Data Science

MICROCONTROLLER AND EMBEDDED SYSTEMS

PRACTICAL COMPONENT OF IPCC

(Academic year 2022 -2023)

SEMESTER – IV

21CS43

Lab Manual

Name :

USN :

Batch : Section :

CHANNABASAVESHWARA INSTITUTE OF TECHNOLOGY
(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi)

(ISO 9001:2015 Certified Institution)

NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

LABORATORY MANNUAL

Microcontroller and Embedded Systems Laboratory/21CS43

(Effective from the academic year 2022 -2023)

Channabasaveshwara Institute of Technology
(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi)

(ISO 9001:2015 Certified Institution)

NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

SYLLABUS

MICROCONTROLLER AND EMBEDDED SYSTEMS
[PRACTICAL COMPONENT OF IPCC]

SEMESTER – IV

Subject Code: 21CS43 CIE M ar ks: 50

Number of Lecture Hours/Week: 03 L + 02 P SEE Marks: 50

Total Number of Contact Hours: 40T +20 P Exam Hours: 03

CREDITS – 04

Course Learning Objectives: This course (21CS43) will enable students to:

CLO 1: Understand the fundamentals of ARM-based systems, including

programming modules with registers and the CPSR.

CLO 2: Use the various instructions to program the ARM controller.

CLO 3: Program various embedded components using the embedded C program.

CLO 4: Identify various components, their purpose, and their application to the

embedded system's applicability.

CLO 5: Understand the embedded system's real-time operating system and its

application in IoT.

Programs List:
PART A

Conduct the following experiments by writing program using

ARM7TDMI/LPC2148 using an evaluation board/simulator andsoftware tool.

 .

1. Sample Programs using Keil Compiler

2. Write a program to find the sum of the first 10 integer numbers.

3. Write a program to find the factorial of a number.

4. Write a program to add an array of 16 bit numbers and store the 32 bit result in internal
RAM.

5. Write a program to find the square of a number (1 to 10) using a look-up table.

6. Write a program to find the largest or smallest number in an array of 32 numbers.

7. Write a program to arrange a series of 32 bit numbers in ascending/descending order.

8. Write a program to count the number of ones and zeros in two consecutive memory
locations.

9. Display “Hello World” message using Internal UART.
PART –B

Conduct the following experiments on an ARM7TDMI/LPC2148 evaluation

board using evaluation version of Embedded 'C' & Keil Uvision-4 tool/compiler.

1. Interface and Control a DC Motor.

2. Interface a Stepper motor and rotate it in clockwise and anti-clockwise direction.

3.Determine Digital output for a given Analog input using Internal ADC of ARM
controller.

4.Interface a DAC and generate Triangular and Square waveforms.

5.Interface a 4x4 keyboard and display the key code on an LCD.

6. Demonstrate the use of an external interrupt to toggle an LED On/Off.

7. Display the Hex digits 0 to F on a 7-segment LED interface, with an appropriate delay
in between.

8. Demonstration of IoT applications by using Arduino and Raspberry Pi.

Course Outcomes

At the end of the course, the student will be able to:

CO 1. Explain C-Compilers and optimization

CO 2. Describe the ARM microcontroller's architectural features and program module.

CO 3. Apply the knowledge gained from programming on ARM to different applications.

CO 4. Program the basic hardware components and their application selection method.

CO 5. Demonstrate the need for a real-time operating system for embedded system

applications.

Graduate Attributes

• Engineering Knowledge

• Problem Analysis

• Modern Tool Usage

• Conduct Investigations of Complex Problems

• Design/Development of Solutions

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 1 -

ARM7 based LPC2148 Microcontroller

The full form of an ARM is an advanced reduced instruction set
computer (RISC) machine, and it is a 32-bit processor architecture
expanded by ARM holdings. The applications of an ARM processor
include several microcontrollers as well as processors. The architecture
of an ARM processor was licensed by many corporations for designing ARM
processor-based SoC products and CPUs.

LPC2148 Microcontroller
The LPC2148 microcontroller is designed by Philips (NXP Semiconductor)

with several in-built features & peripherals. Due to these reasons, it will
make more reliable as well as the efficient option for an application
developer. LPC2148 is a 16-bit or 32-bit microcontroller based on ARM7
family.

Programmer's Model

ARM has a 32-bit data bus and a 32-bit address bus. The data types the
processor supports are Words (32 bits), where words must be aligned to
four byte boundaries. Instructions are exactly one word, and data
operations (e.g. ADD) are only performed on word quantities. Load and
store operations can transfer words.

Registers

The processor has a total of 37 registers made up of 31 general 32 bit
registers and 6 status registers. At any one time 16 general registers (R0
to R15) and one or two status registers are visible to the programmer.
The visible registers depend on the processor mode and the other
registers (the banked registers) are switched in to support IRQ, FIQ,
Supervisor, Abort and undefined mode processing. The register bank
organization is shown in below figure. The banked registers are shaded
in the diagram.

In all modes 16 registers, R0 to R15, are directly accessible. All
registers except R15 are general purpose and may be used to hold data
or address values. Register R15 holds the Program Counter (PC). When
R15 is read, bits [1:0] are zero and bits [31:2] contain the PC. A
seventeenth register (the CPSR - Current Program Status Register) is also
accessible. It contains condition code flags and the current mode bits
and may be thought of as an extension to the PC. R14 is used as the
subroutine link register and receives a copy of R15 when a Branch and

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 2 -

Link instruction is executed. It may be treated as a general- purpose
register at all other times. R14_svc, R14_irq, R14_fiq, R14_abt and
R14_und are used similarly to hold the return values of R15 when
interrupts and exceptions arise, or when Branch and Link instructions
are executed within interrupt or exception routines.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 3 -

Basic and Commonly used Instruction Set of ARM in

programming

Data Processing Instructions

Move instructions

Arithmetic instructions
Logical instructions

Comparison instructions

Multiply instructions

MOV : move

MOV r0, r1; r0 = r1
MOV r0, #5; r0 = 5
MVN : move (negated)

MVN r0, r1; r0 = NOT (r1) =~ (r1)

Example 1
PRE: r5 = 5, r7 = 8;
MOV r7, r5, LSL #2; r7 = r5 << 2 = r5*4

POST: r5 = 5, r7 = 20

LSL: logical shift left
x << y, the least significant bits are filled with zeroes
LSR: logical shift right:
(unsigned) x >> y, the most significant bits are filled with zeroes

ASR: arithmetic shift right
(signed) x >> y, copy the sign bit to the most significant bit

ROR: rotate right
((unsigned) x >> y) | (x << (32-y))

RRX: rotate right extended
c flag <<31 | ((unsigned) x >> 1)
Performs 33-bit rotate, with the CPSR’s C bit being inserted above

sign bit of the word

Example 2

PRE: r0 = 0x00000000, r1 = 0x80000004
MOV r0, r1, LSL #1 ; r0 = r1 *2

POST r0 = 0x00000008, r1 = 0x80000004

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 4 -

Arithmetic Instructions
Syntax: <instruction> {<cond>} {S} Rd, Rn, N
N: a register or immediate value

ADD : add
ADD r0, r1, r2; r0 = r1 + r2
ADC : add with carry
ADC r0, r1, r2; r0 = r1 + r2 + C

SUB : subtract
SUB r0, r1, r2; r0 = r1 - r2

SBC : subtract with carry

SUC r0, r1, r2; r0 = r1 - r2 + C -1
RSB : reverse subtract

RSB r0, r1, r2; r0 = r2 – r1
RSC : reverse subtract with carry

RSC r0, r1, r2; r0 = r2 – r1 + C -1
MUL : multiply

MUL r0, r1, r2; r0 = r1 x r2
MLA : multiply and accumulate

MLA r0, r1, r2, r3; r0 = r1 x r2 + r3

Logical Operations

Syntax: <instruction> {<cond>} {S} Rd, RN, N
N: a register or immediate value
AND : Bit-wise and
ORR : Bit-wise or
EOR : Bit-wise exclusive-or
BIC : bit clear

BIC r0, r1, r2; r0 = r1 & Not (r2)
Example 3:

PRE: r1 = 0b1111, r2 = 0b0101
BIC r0, r1, r2; r0 = r1 AND (NOT (r2))

POST: r0=0b1010
Comparison Instructions
Compare or test a register with a 32-bit value Do not modify the registers
being compared or tested But only set the values of the NZCV bits of the
CPSR register. Do not need to apply to S suffix for comparison
instruction to update the flags in CPSR register

Syntax: <instruction> {<cond>} {S} Rd, N
N: a register or immediate value
CMP: compare

CMP r0, r1; compute (r0 - r1) and set NZCV
CMN: negated compare

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 5 -

CMP r0, r1; compute (r0 + r1) and set NZCV
TST: bit-wise AND test
TST r0, r1; compute (r0 AND r1) and set NZCV
TEQ: bit-wise exclusive-or test

TEQ r0, r1; compute (r0 EOR r1) and set NZCV

Example 4

PRE: CPSR = nzcvqiFt_USER, r0 = 4, r9 = 4
CMP r0, r9

POST: CPSR = nZcvqiFt_USER

Multiply Instruction
Syntax:

MLA{<cond>} {S} Rd, Rm, Rs, Rn
MUL{<cond>} {S} Rd, Rm, Rs
MUL : multiply
MUL r0, r1, r2; r0 = r1*r2
MLA : multiply and accumulate

MLA r0, r1, r2, r3; r0 = (r1*r2) + r3

Syntax: <instruction>{<cond>} {S} RdLo, RdHi, Rm, Rs

Multiply onto a pair of register representing a 64-bit value
UMULL : unsigned multiply long
UMULL r0, r1, r2, r3; [r1,r0] = r2*r3
UMLAL : unsigned multiply accumulate long
UMLAL r0, r1, r2, r3; [r1,r0] = [r1,r0]+(r2*r3)
SMULL: signed multiply long
SMULL r0, r1, r2, r3; [r1,r0] = r2*r3
SMLAL : signed multiply accumulate long

SMLAL r0, r1, r2, r3; [r1,r0] = [r1,r0]+(r2*r3)
Branch Instructions (Cont.)
Syntax

B{<cond>} lable
BL{<cond>} lable
B : branch
B label; pc (program counter) = label Used to change execution flow
BL : branch and link
BL label; pc = label, lr = address of the next address after the BL
Similar to the B instruction but can be used for subroutine

Call Overwrite the link register (lr) with a return address

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 6 -

Example 5
B forward

ADD r1, r2, #4
ADD r0, r6, #2
ADD r3, r7, #4

Forward
SUB r1, r2, #4

Backward
SUB r1, r2, #4

B backward

Load-Store Instructions

Transfer data between memory and processor registers
Three types
Single-register transfer
Multiple-register transfer

Swap

Moving a single data item in and out of register Data item can be
A word (32-bits), Halfword (16-bits), Bytes (8-bits)
Syntax

<LDR|STR>{<cond>}{B} Rd, addressing1

LDR{<cond>}SB|H|SH Rd, addressing2

STR{<cond>} H Rd, addressing2
LDR : load word into a register from memory
LDRB : load byte
LDRSB : load signed byte
LDRH : load half-word
LSRSH : load signed halfword
STR: store word from a register to memory
STRB : store byte

STRH : store half-word
Example 7
LDR r0, [r1] ;= LDR r0, [r1, #0] ;r0 = mem32[r1]
STR r0, [r1] ;= STR r0, [r1, #0] ;mem32[r1]= r0 Register r1 is called the
base address register

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 7 -

ARM LPC 2148 FEATURES:

• 16-bit/32-bit ARM7TDMI-S Microcontroller.

• 40 kB of on-chip static RAM and 512 kB of on-chip flash memory.

• In-System Programming/In-Application Programming (ISP/IAP) via on-

chip boot loader software.

• Embedded ICE RT and Embedded Trace interfaces offer real-time

debugging with the on-chip Real Monitor software and high-speed

tracing of instruction execution.

• USB 2.0 Full-speed compliant device controller with 2 kB of endpoint

RAM.

• Two 10-bit ADCs provide a total of 14 analog inputs

• Single 10-bit DAC provides variable analog output

• Two 32-bit timers/external event counters (with four capture and four

compare channels each)

• PWM unit (six outputs)

• Watchdog Timer.

• Low power Real-Time Clock (RTC) with independent power and 32

kHz clock input.

• Multiple serial interfaces including two UARTs, two Fast I²C-bus (400

kbit/s), SPI and SSP with buffering and variable data length

capabilities.

• Vectored Interrupt Controller (VIC) with configurable priorities and

vector addresses.

• 60 MHz maximum CPU clock available from programmable on-chip

PLL with settling time of 100 us.

• On-chip integrated oscillator operates with an external crystal from 1

MHz to 25 MHz

• Power saving modes include Idle and Power-down.

• Individual enable/disable of peripheral functions as well as peripheral

clock scaling for additional power optimization.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 8 -

LPC 2148 TECHNICAL SPECIFICATIONS:

• Microcontroller: LPC2148 with 512K on chip memory

• Crystal for LPC2148: 12Mhz

• Crystal for RTC: 32.768KHz

• 6 – 10pin Berg headers for external interfacing(GPIOs)

• No separate programmer required (Program with Flash Magic usingon-

chip boot loader)

• No Separate power adapter required (USB port as power source)

• 20pin(2X10) FRC JTAG connector for Programming and debugging

• 16 Pin Berg Header for LCD Interfacing

• Two RS-232 Interfaces (UART0 and UART1)

• Real-Time Clock with Battery Holder

• 1 Analog Potentiometer connected to ADC

• 4 USER Switches

• 8 USER LEDs

• Reset and Boot loader Switches

• On Board Buzzer Interface

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 9 -

g
x
c

a

Step By Step

HOW TO USE KEIL µVISION4

For ARM7 (LPC2148)

Keil is on the tool whi
ARM, Cortex-M, Corte
this article we are goin

h is widely used in Industry, KEIL has tools for
-R, 8051, C166, and 251 processor families. In
to discuss KEIL tools for ARM. The development

tools of for ARM include

1. µvision IDE v4
2. Compiler for ARM (armcc)
3. MicroLib (C library)
4. Assembler for ARM (rmasm)
5. Linker For ARM (armLink)

following...

Step1: Click for KEIL µVISION4 Icon . Which appears after Installing Keil
KEIL µVISION4. This will open uvison IDE.

Step2: Click on Project Menu, Then New µVison Project.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 10 -

Step3: Create New Project Folder named as “Keil Test”.

Step 4: Select Target

Device

Step 5: Then select specific chip i.e. LPC2148.

For ALP program, CLICK “NO”, For “C” program click on “YES”

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 11 -

Step 6: Then you will see following window

Step 7: Now you see Startup.s is already added which is necessary for
running code for Keil.

Note: Code wills Not Run without Startup.s

Startup.s is available in C:\Keil\ARM\Startup\Philips.

Step 8: Now Click on File Menu and Click on New.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 12 -

Step 09: Write Code for Blink LED in C OR ASM
and FileName.c/ASM Save.

Note: Don’t forget to save .c/ASM Extension.

Step 10: Now you Window in C Syntax.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 13 -

Step 11: Now you add LED.c file by adding Source Group 1 Add files to
Group ‘Source Group 1’.

Step 12: Add LED.C file.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 14 -

Step 13: Now Click on Options for Target ‘Target 1’.

Step 14: Go to Options for Target ‘Target 1’. Click on Check Box Create
HEX File.

Step 15: Then go to Linker. Click on Use Memory Layout for Target
Dialog.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 15 -

Step 16: Then Click on Rebuild All Target Files

Step 17: Now you see 0 Error(s), 0 Warning (s). Then Hex File will create
in Specific Folder. Now to download it for you target hardware.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 16 -

Part A

Program1-Sample Programs using Keil Compiler:

AIM: To write and simulate ARM assembly language programs for data
transfer, arithmetic and logical operations (Demonstrate with the help of a
suitable program).

1. Data Transfer.

The below assembly level program moves the 32 bit data from register to register.

area movt, code, readonly
entry
mov r1,#0005 ; Mov immediate 32 bit data to r1
mov r2,#0002 ; Mov immediate 32 bit data to r1
mov r3,r1 ; Register-Register movement
mov r4,r2 ; Register-Register movement

stop b stop ; End of the program

end

2. Arithmetic Operations

A. Addition, Subtraction and Multiplication:

area addt, code, readonly
entry
mov r1,#0005 ; Mov immediate 32 bit data to r1
mov r2,#0002 ; Mov immediate 32 bit data to r2
add r3,r2,r1 ; Add the contents present in r2 with the

contents of r1 and store in r3
sub r5,r1,r2 ; Subtract; r5 = r1-r2
mul r6,r1,r2 ; Multiply
mov r7,r6
add r7,#2 ; Add immediate data
mov r8,r7
sub r8,#3 ; Subtract immediate data
mov r9,r8

stop b stop

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 17 -

end

3. Logical operations : To perform AND, Logical Shift operations,
area dis,code,readonly

entry

mov r0,#0x83

mov r1,r0

and r1, # 0Xf0 ; Perform Logical AND operation

mov r2,r1

lsr r2, #4 ; Perform Logical right Shift operation

mov r3, r0

and r3, # 0X0f

and r1,r0

orr r2,r1 ; Logical OR Operation

lsr r2, #3 ; Logical shift right r2 by 3 bit positions

stop b stop

end

Write an ALP using ARM to execute the following instructions

• ADD r1, r0, r0, LSL #3
; r1 = r0 + r0 << 3 = r0 + 8 × r0

• ADD r1, r0, r0, LSR #3
; r1 = r0 + r0 >> 3 = r0 + r0/8 (unsigned)

• ADD r1, r0, r0, ASR #3
; r1 = r0 + r0 >> 3 = r0 + r0/8 (signed)

The state of the system after loading the code for Program 1

✓

 The semicolon indicates a user-supplied comment.
✓

 Anything following a semicolon on the same line is ignored by the
assembler.

✓

 The first line is AREA Example1, CODE, READONLY is an
assembler directive and is required to set up the program. It is a
feature of the development system and not the ARM assembly
language.

✓

 An assembler from a different company may have a different way of
defining the start of a program. In this case, AREA refers to the
segment of code, Example1 is the name we’ve given it, CODE
indicates executable code rather than data, and READONLY state
that it cannot be modified at run time.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 18 -

✓

 Anything starting in column 1 (in this case Stop) is a label that can
be used to refer to that line.

✓

 The instruction Stop B Stop means ‘Branch to the line labeled
Stop’ and is used to create an infinite loop. This is a convenient
way of ending programs in simple examples like these.

✓

 The last line END is an assemble directive that tells the assembler
there is not more code to follow. It ends the program.

Graded ARM assembly language Examples

ADDITION

The problem: P = Q + R + S
Let Q = 2, R = 4, S = 5. Assume that r1 = Q, r2 = R, r3 = S. The result Q
will go in r0.

The Code

ADD r0,r1,r2 ;add Q to R and put in P
ADD r0,r0,r3 ;add S to P and put the result in P

The program
AREA Example1, CODE, READONLY
ADD r0,r1,r2
ADD r0,r3
Stop B Stop
END

Notes:

The semicolon indicates a user-supplied comment. Anything following a
semicolon on the same line is ignored by the assembler.
The first line is AREA Example1, CODE, READONLY is an assembler directive
and is required to set up the program. It is a feature of the development system
and not the ARM assembly language. An assembler from a different company
may have a different way of defining the start of a program. In this case, AREA
refers to the segment of code, Example1 is the name we’ve given it, CODE
indicates executable code rather than data, and READONLYstate that it cannot
be modified at run time.
Anything starting in column 1 (in this case Stop) is a label that can be used to
refer to that line.
The instruction Stop B Stop means ‘Branch to the line labelled Stop’ and is
used to create an infinite loop. This is a convenient way of ending programs in
simple examples like these.
The last line ENDis an assemble directive that tells the assembler there is not
more code to follow. It ends the program.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 19 -

Figure Example 1.1 The state of the system after loading the code for Example 1

Note that the contents of r0 are 2 + 4 + 5 = 11 = 0x0B. This is the result we expected.

Example 2 ADDITION
This problem is the same as Example 1. P = Q + R + S
Once again, let Q = 2, R = 4, S = 5 and assume r1 = Q, r2 = R, r3 = S. In
this case, we will put the data in memory in the form of constants before
the program runs.
The Code
MOV r1,#Q ;load Q into r1
MOV r2,#R ;load R into r2
MOV r3,#S ;load S into r3
ADD r0,r1,r2 ;Add Q to R
ADD r0,r0,r3 ;Add S to (Q + R)
Here we use the instruction MOV that copies a value into a register. The
value may be the contents of another register or a literal. The literal is
denoted by the # symbol.
We can write, for example, MOV r7,r0, MOV r1,#25 or MOV r5,#Time

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 20 -

We have used symbolic names Q, R and S. We have to relate these
names to actual values. We do this with the EQU (equate) assembler
directive; for example,
Q EQU 2
Relates the name Q to the value 5. If the programmer uses Q in an
expression, it is exactly the same as writing 2. The
purpose of using Q rather than 2 is to make the program more readable.
The program
AREA Example2, CODE, READONLY
MOV r1,#Q ;load r1 with the constant Q
MOV r2,#R
MOV r3,#S
ADD r0,r1,r2
ADD r0,r0,r3
Stop B Stop
Q EQU 2 ;Equate the symbolic name Q to the value 2
R EQU 4 ;
S EQU 5 ;
END

Example 3 ADDITION
The problem once again is P = Q + R + S. As before, Q = 2, R = 4, S = 5
and we assume that r1 = Q, r2 = R, r3 = S.
In this case, we will put the data in memory as constants before the
program runs. We first use the load register,
LDR r1,Q instruction to load register r1 with the contents of memory
location Q. This instruction does not exist and is not part of the ARM’s
instruction set. However, the ARM assembler automatically changes it
into an actual instruction.
We call LDR r1,Q a pseudoinstruction because it behaves like a real
instruction. It is indented to make the life of a programmer happier by
providing a shortcut.
The Code
LDR r1,Q ;load r1 with Q
LDR r2,R ;load r2 with R
LDR r3,S ;load r3 with S
ADD r0,r1,r2 ;add Q to R
ADD r0,r0,r3 ;add in S
STR r0,Q ;store result in Q
The program
AREA Example3, CODE, READWRITE
LDR r1,Q ;load r1 with Q
LDR r2,R ;load r2 with R
LDR r3,S ;load r3 with S

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 21 -

ADD r0,r1,r2 ;add Q to R
ADD r0,r3 ;add in S
STR r0,Q ;store result in Q
Stop B Stop
AREA Example3, CODE, READWRITE
P SPACE 4 ;save one word of storage
Q DCD 2 ;create variable Q with initial value 2
R DCD 4 ;create variable R with initial value 4
S DCD 5 ;create variable S with initial value 5
END
Note how we have to create a data area at the end of the program. We
have reserved spaces for P, Q, R, and S. We use the SPACE directive for S
to reserve 4 bytes of memory space for the variable S. After that we
reserve space for Q, R, and S. In each case we use a DCD assembler
directive to reserve a word location (4 bytes) and to initialize it. For
example,
Q DCD 2 ;create variable Q with initial value 2 means ‘call the current
line Q and store the word 0x00000002 at that location.
Figure Example 3.1 shows the state of the program after it has been
loaded. In this case we’ve used the view memory command to show the
memory space. We have highlighted the three constants that have been pre-
loaded into memory.
Take a look at the disassembled code. The pseudoinstruction LDR r1,Q
was actually translated into the real ARM instruction LDR
r1,[PC,#0x0018]. This is still a load instruction but the addressing mode
is register indirect. In this case, the address is the contents of the
program counter, PC, plus the hexadecimal offset 0x18. Note also that
the program counter is always 8 bytes beyond the address of the current
instruction. This is a feature of the ARM’s pipeline.
Consequently, the address of the operand is [PC] + 0x18 + 8 = 0 + 18 + 8
= 0x20.
If you look at the memory display area you will find that the contents of
0x20 are indeed 0x00000002.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 22 -

Figure The state of the system after loading the program

Example 4 ADDITION
The problem P = Q + R + S where Q = 2, R = 4, S = 5. In this case we are
going to use register indirect addressing to access the variables. That is,
we have to set up a pointer to the variables and access them via this
pointer.
The Code
ADR r4,TheData ;r4 points to the data area
LDR r1,[r4,#Q] ;load Q into r1
LDR r2,[r4,#R] ;load R into r2
LDR r3,[r4,#S] ;load S into r3
ADD r0,r1,r2 ;add Q and R
ADD r0,r0,r3 ;add S to the total
STR r0,[r4,#P] ;save the result in memory

These are the three data values

we’ve stored in memory at

locations

0x00000020

The address of the first data

element on this line is

0x0000001C. The first

The code

generated by the

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 23 -

The program
AREA Example4, CODE, READWRITE
ENTRY
ADR r4,TheData ;r4 points to the data area
LDR r1,[r4,#Q] ;load Q into r1
LDR r2,[r4,#R] ;load R into r2
LDR r3,[r4,#S] ;load S into r3
ADD r0,r1,r2 ;add Q and R
ADD r0,r0,r3 ;add S to the total
STR r0,[r4,#P] ;save the result in memory
Stop B Stop
P EQU 0 ;offset for P
Q EQU 4 ;offset for Q
R EQU 8 ;offset for R
S EQU 12 ;offset for S
AREA Example4, CODE, READWRITE
TheData SPACE 4 ;save one word of storage for P
DCD 2 ;create variable Q with initial value 2
DCD 4 ;create variable R with initial value 4
DCD 5 ;create variable S with initial value 5
END
Figure Example 4.1 shows the state of the system after the program has
been loaded. I have to admit, that I would not write this code as it is
presented. It is far too verbose. However, it does illustrate several
concepts.
First, the instruction ADR r4,TheData loads the address of the data
region (that we have labelled TheData into register r4. That is, r4 is
pointing at the data area. If you look at the code, we have reserved four
bytes for P and then have loaded the values for Q, R and S into
consecutive word location. Note that we have not labelled any of these
locations.
The instruction ADR (load an address into a register) is a
pseudoinstruction. If you look at the actual disassembled code in Figure
Example 4.1 you will see that this instruction is translated into ADD
r4,pc,#0x18. Instead of loading the actual address of TheData into r4 it
is loading the PC plus an offset that will give the appropriate value.
Fortunately, programmers can sleep soundly without worrying about
how the ARM is going to translate an ADR into actual code – that’s the
beauty of pseudoinstructions.
When we load Q into r1 we use LDR r1,[r4,#Q]. This is an ARM load
register instruction with a literal offset; that is, Q. If you look at the EQU
region, Q is equated to 4 and therefore register r1 is loaded with the data
value that is 4 bytes on from where r4 is pointing. This location is, of
course, where the data corresponding to Q has been stored.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572

Figure Example 4.1 The state of

Figure Example 4.2 The state of

572 216

of the system after loading the program

of the system after executing the program

Page No. - 24 -

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 25 -

Example 5 ADDITION
We’re going to repeat the same example once again. This time we will
write the program in a more compact fashion,
still using the ADR (load register with address instruction).
To simplify the code, we’ve used simple numeric offsets (because there is
relatively little data and the user comments
tell us what’s happening. Note that we have used labels Q, R, and S for
the data. These labels are redundant and are not
needed since they are not referred to anywhere else in the program.
There’s nothing wrong with this. These labels just
serve as a reminder to the programmer.
AREA Example5, CODE, READWRITE
ENTRY
ADR r0,P ;r4 points to the data area
LDR r1,[r0,#4] ;load Q into r1
LDR r2,[r0,#8] ;load R into r2

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 26 -

ADD r2,r1,r2 ;add Q and R
LDR r1,[r0,#12] ;load S into r3
ADD r2,r2,r1 ;add S to the total
STR r1,[r2] ;save the result in memory
Stop B Stop
AREA Example5, CODE, READWRITE
P SPACE 4 ;save one word of storage for P
Q DCD 2 ;create variable Q with initial value 2
R DCD 4 ;create variable R with initial value 4
S DCD 5 ;create variable S with initial value 5
END
Note also that we have reused registers to avoid taking up so many. This
example uses only r0, r1, and r2. Once a register has been used (and its
value plays no further part in a program, it can be reused. However, this
can make debugging harder. In this example at one point r1 contains Q
and at another point it contains S. Finally, it contains the result S.
Figure Example 5.1 gives a snapshot of the system after the program has
been loaded, and Figure Example 5.2 shows the state after the program
has been executed.

Figure Example 5.1 The state of the system before executing the
program

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 27 -

Figure Example 5.2 The state of the system after executing the program

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 28 -

Program No .2 Date:

AIM: Write a program to find the sum of first 10 integer numbers.

AREA int, CODE, readonly
ENTRY
mov r5,#10
mov r0,#0
mov r1,#1

loop add r0,r0,r1
add r1,r1,#1
subs r5,r5,#1
cmp r5,#0
bne loop
ldr r4,=result
str r0,[r4]

stop b stop
AREA int1,data,readonly

result dcd 0x0
end

Result: 1+2+3+4+5+6+7+8+9+10= 55 in decimal
The Hexa value of 55 is 37 is stored in R0 Register.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 29 -

Program No .3 Date:

AIM: Write a program to find factorial of a number.
AREA factorial, CODE, readonly
ENTRY

MOV R0,#1 ;int c =1

MOV R1,#5 ;int fact=3

MOV R3,#1 ;int n=1

BL loop

B STOP

loop

MUL R4,R3,R0

MOV R3,R4

ADD R0,R0,#1

CMP R0,R1

BLE loop

MOV PC,LR

STOP B STOP

END

The final result will be available in R1 register, It will be in Hexadecimal value eg:

The data given hers is 5: Factorial is 5*4*3*2*1= 120d, But result in R1 will be 78,

which is the hexadecimal value of 120.

For 4; 24 is Decimal and 18 in Hexa as shown in below output of Register R1.

OR

area fact,code,readonly
entry
mov r0,#4
mov r1,#01

back mul r2,r0,r1
mov r1,r2
subs r0,r0,#01
cmp r0,#00
bne back

stop b stop
end

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 30 -

Program No. 4 Date:

Aim: Write a program to add an array of 16 bit numbers and store
the 32 bit result in internal RAM

AREA PROG, CODE, READONLY
ENTRY
MOV R0, #04
mov r1, #00
mov r2, #0x40000000
mov r3, #0x40000010

loop ldrh r4,[r2]
add r1,r4,r1
subs r0,r0,#01
add r2,#2
bne loop
str r1, [r3]

stop b stop
end

Result:

2211
+ 4433
+ 6655
+ 8877

00 01 55 10

Look for the results in location 0x40000010.

----------------------- Perform Hexa addition:

Result: Result will be stored from this side

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 31 -

Program No. 5 Date:

Aim: Write a program to find the square of a number (1 to 10) using
look-up table.

area square, code, readonly
entry
ldr r0,=table1
ldr r1, =5
sub r1, #1
add r0,r1
ldrb r2, [r0]

stop b stop
area data1, data, readonly

table1 dcb 01,04,09,16,25,36,49,64,81,100
end

Result:

Result: The given number is 5, Square of 5 is 25 in decimal, It is 18
in Hexa, The value 18 is found in R2.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 32 -

Program No. 6 Date:

AIM: Write a program to find the largest/smallest number in an
array of 32 bit numbers.

AREA PROG, CODE, READONLY

ENTRY
ldr r0,= data1
ldr r3,=0x40000000
ldr r4, = 0x05
ldr r1, [r0],#04
sub r4,r4,#01

back ldr r2, [r0]
cmp r1,r2
bhs/blo less
mov r1,r2

less add r0,r0,#04
sub r4,r4,#01
cmp r4,#00
bne back
str r1,[r3]

stop b stop
area data, code

; data1 dcd &64,&05,&96,&10,&65 ; (Either Data can be given in
this format or as shown in the next line)
data1 dcd 0x70000000,0x80000000,0x90000000,0x10000000,0x50000000

end

RESULTS:

LOWEST VALUE 0x10000000{BLO} IS STORED AS SHOWN BELOW

HISHEST VALUE 0x9000000{BHS} IS STORED AS SHOWN BELOW

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 33 -

Program No. 7 Date:

AIM: Write a program to arrange a series of 32 bit numbers in
ascending/descending order.

;/* PROGRAM TO sort in Descending order */
;/* ARRAY OF 4 NUMBERS 0X44444444
*/,0X11111111,0X33333333,0X22222222 */
;/* SET A BREAKPOINT AT START1 LABLE & RUN THE PROGRAM*/
;/* CHECK THE UNSORTED NUMBERS AT LOCATION 0X40000000
NEXT */
;/* SET A BREAKPOINT AT NOP INSTRUCTION,RUN THE PROGRAM &
CHECK THE RESULT */
;/* RESULT CAN BE VIEWED AT LOCATION 0X40000000 */

AREA DESCENDING, CODE, READONLY

ENTRY ;Mark first instruction to execute

MOV R8,#4 ; INTIALISE COUNTER TO 4(i.e. N=4)

LDR R2,=CVALUE ; ADDRESS OF CODE REGION

LDR R3,=DVALUE ; ADDRESS OF DATA REGION

LOOP0
LDR R1,[R2],#4 ; LOADING VALUES FROM CODE REGION

STR R1,[R3],#4 ; STORING VALUES TO DATA REGION

SUBS R8,R8,#1 ; DECREMENT COUNTER
CMP R8,#0 ; COMPARE COUNTER TO 0
BNE LOOP0 ; LOOP BACK TILL ARRAY ENDS

START1 MOV R5,#3 ; INTIALISE COUNTER TO 3(i.e. N=4)
MOV R7,#0 ; FLAG TO DENOTE EXCHANGE HAS OCCURED

LDR R1,=DVALUE ; LOADS THE ADDRESS OF FIRST VALUE

LOOP LDR R2, [R1],#4 ; WORD ALIGN T0 ARRAY ELEMENT

LDR R3,[R1] ; LOAD SECOND NUMBER
CMP R2,R3 ; COMPARE NUMBERS
BGT/BLT LOOP2 ; IF THE FIRST NUMBER IS > THEN GOTO LOOP2

STR R2,[R1],#-4 ; INTERCHANGE NUMBER R2 & R3

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 34 -

STR R3,[R1] ; INTERCHANGE NUMBER R2 & R3

MOV R7,#1 ; FLAG DENOTING EXCHANGE HAS TAKEN PLACE

ADD R1,#4 ; RESTORE THE PTR

LOOP2

NOP
NOP
NOP

SUBS R5,R5,#1 ; DECREMENT COUNTER
CMP R5,#0 ; COMPARE COUNTER TO 0
BNE LOOP ; LOOP BACK TILL ARRAY ENDS
CMP R7,#0 ; COMPARING FLAG
BNE START1; IF FLAG IS NOT ZERO THEN GO TO START1 LOOP

; ARRAY OF 32 BIT NUMBERS(N=4) IN CODE REGION

CVALUE
DCD 0X44444444 ;
DCD 0X11111111 ;
DCD 0X33333333 ;
DCD 0X22222222 ;

AREA DATA1,DATA,READWRITE ;
; ARRAY OF 32 BIT NUMBERS IN DATA REGION
DVALUE

DCD 0X00000000 ;

END ; Mark end of file

DESCENDING ORDER OUTPUT

ASCENDING ORDER

OUTPUT:

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 35 -

Program No. 8 Date:

Aim: Write a program to count the number of ones and zeros in two
consecutive memory locations.

area data1, code, readonly
entry
mov r0, #0x40000000
mov r1,#02
mov r2,#00
mov r3,#00

up mov r4,#08
ldrb r5,[r0]

top tst r5,#01
beq inczero
add r2,#01
b loop

inczero add r3,#01
loop lsr r5,#01

subs r4,#01
cmp r4,#0
bne top
add r0,#1
subs r1,#01
cmp r1,#00
bne up

stop b stop
end

Result:

The given data is 36 and 46:
0011 0110 0100 0110
There are 9 zeros stored in R3 and 7 ones
stored in R2.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 36 -

Program No. 09 Date:

Aim: Display “Hello World” message using Internal UART

PROGRAM:

#include <LPC21xx.H> /* LPC21xx definitions */
#include "Serial.h"
void delay_ms(int count)
{

int j=0,i=0;

for(j=0;j<count;j++)
{

for(i=0;i<35;i++);
}

}
int main (void)
{

uart0_init(); // Initialize UART0
delay_ms(100000);

while (1)

{
uart0_puts ("\n\rHello World\n\r");
delay_ms(1000000);
}

}

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 37 -

PART-B

Conduct the following experiments on an ARM7TDMI/LPC2148
evaluation board using evaluation version of Embedded 'C' & Keil
Uvision-4 tool/compiler.

Flash Magic Tool
To program the Microcontroller, Flash Magic tool is used. Generally, the
microcontroller is in one of the two modes. One is RUN mode and the
other is PROGRAMMING mode. In RUN mode microcontroller executes
the application present in the microcontroller flash memory. In
PROGRAMMING mode, microcontroller programs its flash memory in
synchronisation with Flash Magic.
To enter in to the programming mode, Hold down SW2(isp) and
SW3(reset), then release SW3 first and finally SW2 . To enter in to Run
Mode,press the SW3(reset) after programming is over.

Snapshot of the Flash Magic Tool.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 38 -

‘

Sample programs to demonstrate with the help of a suitable program

LPC2148 Led Blinking

This C program discusses how to configure the LPC2148 ports as GPIO
and then send a low/high signal on it.

The Below registers will be used for Configuring and using the GPIOs for
sending and receiving the Digital signals.

1. PINSEL: GPIO Pins Select Register

Almost all the LPC1768 pins are multiplexed to support more than 1
function. Every GPIO pin has a minimum of one function and max of
four functions. The required function can be selected by configuring the
PINSEL register.

2. IODIR: GPIO Direction Control Register.

This register individually controls the direction of each port pin.

IOxDIR : This is the GPIO direction control register. Setting a bit to ‘0’ in
this register will configure the corresponding pin to be used as input
while setting it to ‘1’ will configure it as output.

Values Direction

0 Input

1 Output

3. IOSET:Port Output Set Register.

This register controls the state of output pins. Writing 1s produces highs
at the corresponding port pins. Writing 0s has no effect. Reading this
register returns the current contents of the port output register, not the
physical port value.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 39 -

IOxSET : This register can be used to drive an ‘output’ configured pin to
logic 1 i.e. HIGH. Writing zero does not have any effect and hence it can’t
be used to drive a pin to Logic 0 i.e. LOW. For driving pins LOW IOxCLR
is used which is explained as below:

Values IOSET

0 No Effect

1 Sets High on
Pin

4. IOCLR:Port Output Clear Register.

IOxCLR:This register can be used to drive an ‘output’ configured pin to
logic 0 i.e. LOW. Writing zero does not have any effect and hence it can’t
be used to drive a pin to Logic 1.
This register controls the state of output pins. Writing 1s produces lows
at the corresponding port pins. Writing 0s has no effect.

Values IOCLR

0 No Effect

1 Sets Low on
Pin

5. IOPIN: GPIO Port Pin Value Register.

This register is used for both reading and writing data from/to the PORT.

Output: Writing to this register places corresponding values in all bits of

the particular PORT pins.

Input: The current state of digital port pins can be read from this

register, regardless of pin direction or alternate function selection (as

long as pins are not configured as an input to ADC

IO0CLR=(1<<10), this is how we can make P0.10 to become LOW (LED

turned ON). IO0SET= (1<<10), would make output HIGH (LED turned

OFF) for Pin P0.10.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 40 -

Sample ‘C’ Program: To write a C program to Blink a LED /Port Pin with LPC

2148 ARM 7 Microcontroller.

#include <lpc214x.h> //Header File “x” can be wrt to
controller
unsigned int delay;

int main(void)

{
IO1DIR = (4); // Bit No 4 (0100) will be activated

while(1) // If True

{
IO1CLR = (04); // Clear Bit 04 of GPIO1

for (delay=0 ;delay<5000; delay++); // Call Delay
IO1SET = (04); // Set Bit 04 of GPIO1
for (delay=0; delay<5000; delay++); // Call Delay

}
}

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 41 -

Program No. 1

Aim: Interface and Control a DC Motor.

DC Motor Control using PWM of LPC1768
In most of the applications controlling the speed of DC motor is essential where
the precision and protection are the essence. Here we will use the PWM
technique to control the speed of the motor
LPC 2148 has one PWM channel with six ports. PWM changes the average
output voltage by fast switching. By changing the on time, the output voltage
can be 0 to 100%. There are two software parameters that need a little
explanation: cycle and offset. Cycle is the length of a PWM duty cycle and offset
is the on time of a duty cycle.
SELECTING THE PWM FUNCTION TO GPIO
The block diagram below shows the PWM pins multiplexed with other GPIO
pins. The PWM pin can be enabled by configuring the corresponding PINSEL
register to select PWM function. When the PWM function is selected for that pin
in the Pin Select register, other Digital signals are disconnected from the PWM
input pins.
PWM REGISTERS:
The registers associated with LPC1768 PWM are

□ IR-> Interrupt Register: The IR can be written to clear interrupts. The IR can
be read to identify which of eight possible interrupt sources are pending.

□ TCR-> Timer Control Register: The TCR is used to control the Timer Counter
functions. The Timer Counter can be disabled or reset through the TCR.

□ PR- > Prescale Register: The TC is incremented every PR+1 cycles of PCLK.

□ MCR-> Match Control Register: The MCR is used to control if an interrupt is
generated and if the TC is reset when a Match occurs.

□ MR0 – MR6-> Match Register: Each can be enabled in the MCR to reset the
TC, stop both the TC and PC, and/or generate an interrupt when it matches the
TC.

□ PCR-> PWM Control Register: Enables PWM outputs and selects PWM
channel types as either single edge or double edge controlled.

□ LCR-> Load Enable Register: Enables use of new PWM match values.
Note: for detailed description of each registers kindly refer PWM waveform
section
If you need to control the speed of a DC motor you have a few options.
Controlling the speed by controlling either voltage or current is inefficient. Let‟s

understand a bit the speed control of DC motor Using Pulse Width Modulation
because controlling how long the voltage is applied with a certain frequency
gives you the best control over the motor‟s speed.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 42 -

Conventional power supplies tend to generate lots of heat because are working
as variable resistors pumping current through external circuits. The pulse
width modulation circuits are digital circuits which produce pulsed current.
Due to the fact that the pulsed width modulation power supplies works in a
state in between on and off, the heat generated is very low compared to the
conventional power supplies.
The duty cycle of the circuit can be changed by pressing the switches SW22 and
SW23. If we increase the duty cycle(press SW22), the speed of the motor
increases and if we decrease the duty cycle(press SW23), the speed of the motor
decreases.

PROGRAM:

#include <LPC214x.H>
void delay_led(unsigned long int); // Delay Time Function
int main(void)
{

IO1DIR = 0xC0000000;
IO0DIR = 0x00200000;
while(1) // Loop Continue
{
IO0SET = 0x00200000;
delay_led(15000);
IO1SET = 0x80000000;
IO1CLR = 0x40000000; // Clear Pin P0.7,6,5,4 (ON LED)
delay_led(1500000); // Display LED Delay
IO1SET = 0x40000000;
IO1CLR = 0x80000000; // Set Pin P0.7,6,5,4 (OFF LED)
delay_led(1500000); // Display LED Delay
}
}
/***********************/
/* Delay Time Function */
/***********************/
void delay_led(unsigned long int count1)
{
while(count1 > 0) {count1--;} // Loop Decrease Counter
}

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572

Program No. 2

Aim: Interface a Stepper motor and rotate it in
clockwise direction.

How Stepper Motors Work?
Stepper motors consist of a permanent magnetic rotating shaft, called
the rotor, and electromagnets
the motor, called the
a stepper motor. At position
the upper electromagnet, which is currently
it). To move the rotor
deactivated and the right
move 90 degrees CW, aligning itself with the active magnet. This process
is repeated in the same manner
until we once again reach

What are stepper motors

□ Positioning – Since
excel in applications requiring precise positioning such as 3D printers,
CNC, Camera platforms
stepper motors to position

□ Speed Control – Precise increments of movement
excellent control of rotational

□ Low Speed Torque -
low speeds. A Stepper motor has maximum torque at low speeds, so they
are a good choice for
precision.

572 216

Date:

Aim: Interface a Stepper motor and rotate it in clockwise and anti

Work?
Stepper motors consist of a permanent magnetic rotating shaft, called
the rotor, and electromagnets on the stationary portion that surrounds

 stator. Figure 1 illustrates one complete
At position 1, we can see that the rotor is beginning at

electromagnet, which is currently active (has voltage applied to
rotor clockwise (CW), the upper electromagnet
right electromagnet is activated, causing

move 90 degrees CW, aligning itself with the active magnet. This process
is repeated in the same manner at the south and west electromagnets

reach the starting position.

motors good for?

 steppers move in precise repeatable
excel in applications requiring precise positioning such as 3D printers,

platforms and X,Y Plotters. Some disk drives also use
position the read/write head.

Precise increments of movement also
rotational speed for process automation and

- Normal DC motors don't have very much torque at
low speeds. A Stepper motor has maximum torque at low speeds, so they

for applications requiring low speed

Page No. - 43 -

Date:

clockwise and anti-

Stepper motors consist of a permanent magnetic rotating shaft, called
portion that surrounds

complete rotation of
1, we can see that the rotor is beginning at

active (has voltage applied to
electromagnet is

causing the rotor to
move 90 degrees CW, aligning itself with the active magnet. This process

and west electromagnets

repeatable steps, they
excel in applications requiring precise positioning such as 3D printers,

drives also use

also allow for
and robotics.

DC motors don't have very much torque at
low speeds. A Stepper motor has maximum torque at low speeds, so they

speed with high

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 44 -

In the above example, we used a motor with a resolution of 90 degrees or
demonstration purposes. In reality, this would not be a very practical
motor for most applications. The average stepper motor's resolution --
the amount of degrees rotated per pulse -- is much higher than this. For
example, a motor with a resolution of 1.8 degrees would move its rotor
1.8 degrees per step, thereby requiring 200 pulses (steps) to complete a
full 360 degree rotation.
Here we are using 200 pole stepper motor hence it gives 360degree/200
pole=1.8 degree per step.
So for example if we need 120 degree rotation then we have to apply
approximately 67 pulses to complete 120 degree rotation
120/1.8=66.66==67 steps approximately.
Here one cycle means 4 steps. So if we need 90 degree rotation then
90/1.8=50 steps.
Here one cycle means 4 steps. So 50/4=12.5 =~ 13. So we need 13 cycles
to rotate 90 degree.
If we want to run 180 degree then 180/1.8=100. So 100/4=25 cycles
would make a stepper motor to rotate 180 degree.

PROGRAM:

#include <LPC214X.h>

void delay();

void delay()
{

int i,j;
for (i=0; i<0xff; i++)

for (j=0; j<0xff; j++);
}

int main()
{

IO0DIR=0x000F0000; //Consider ARM port Pin from 16-19
//And set these pins

while (1)
{
//while (IO0PIN & 0x00008000);
//while (! (IO0PIN & 0x00008000));

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 45 -

IO0PIN=0x00010000;
delay ();
IO0PIN=0x00020000;
delay ();
IO0PIN=0x00040000;
delay ();
IO0PIN=0x00080000;
delay();

}
}

; This is for Clock wise rotation

; For Anti- Clock wise Change

the direction as 8,4,2,1

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 46 -

Program No. 3 Date:

Aim: Determine Digital output for a given Analog input using
Internal ADC of ARM controller.

Analog to Digital Converter(ADC) is used to convert analog signal into digital

form. LPC2148 has two inbuilt 10-bit ADC i.e. ADC0 & ADC1.

• ADC0 has 6 channels &ADC1 has 8 channels.

• Hence, we can connect 6 distinct types of input analog signals to ADC0

and 8 distinct types of input analog signals to ADC1.

• ADCs in LPC2148 use Successive Approximation technique to convert

analog signal into digital form.

• This Successive Approximation process requires a clock less than or

equal to 4.5 MHz. We can adjust this clock using clock divider settings.

• Both ADCs in LCP2148 convert analog signals in the range of 0V to

VREF (typically 3V; not to exceed VDDA voltage level).

LPC 2148 ADC Pins

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 47 -

AD0.1:4, AD0.6:7 & AD1.7:0 (Analog Inputs)

These are Analog input pins of ADC. If ADC is used, signal level on analog pins

must not be above the level of VDDA; otherwise, ADC readings will be invalid. If

ADC is not used, then the pins can be used as 5V tolerant digital I/O pins.

VREF (Voltage Reference)

Provide Voltage Reference for ADC.

VDDA& VSSA (Analog Power and Ground)

These are the power and ground pins for ADC. These should be same as VDD &

VSS.

Let’s see the ADC registers which are used to control and monitors the ADC

operation.

Here, we will see ADC0 registers and their configurations. ADC1 has similar

registers and can be configured in a similar manner.

ADC0 Registers

1. AD0CR (ADC0 Control Register)

• AD0CR is a 32-bit register.

• This register must be written to select the operating mode before A/D

conversion can occur.

• It is used for selecting channel of ADC, clock frequency for ADC, number

of clocks or number of bits in result, start of conversion and few other

parameters.

AD0CR (ADC0 Control Register)

• Bits 7:0 – SEL

These bits select ADC0 channel as analog input. In software-controlled

mode, only one of these bits should be 1.e.g. bit 7 (10000000) selects

AD0.7 channel as analog input.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 48 -

• Bits 15:8 – CLKDIV

The APB(ARM Peripheral Bus)clock is divided by this value plus one, to

produce the clock for ADC.

This clock should be less than or equal to 4.5MHz.

• Bit 16 – BURST

0 = Conversions are software controlled and require 11 clocks

1 = In Burst mode ADC does repeated conversions at the rate selected by

theCLKS field for the analog inputs selected by SEL field. It can be

terminated by clearing this bit, but the conversion that is in progress will

be completed.

When Burst = 1, the START bits must be 000, otherwise the conversions

will not start.

• Bits 19:17 – CLKS

• Selects the number of clocks used for each conversion in burst mode and

the number of bits of accuracy of Result bits of AD0DR.

e.g. 000 uses 11 clocks for each conversion and provide 10 bits of result

in corresponding ADDR register.

000 = 11 clocks / 10 bits

001 = 10 clocks / 9 bits

010 = 9 clocks / 8 bits

011 = 8 clocks / 7 bits

100 = 7 clocks / 6 bits

101 = 6 clocks / 5 bits

110 = 5 clocks / 4 bits

111 = 4 clocks / 3 bits

• Bit 20 – RESERVED

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 49 -

• Bit 21 – PDN

0 = ADC is in Power Down mode

1 = ADC is operational

• Bit 23:22 – RESERVED

• Bit 26:24 – START

When BURST bit is 0, these bits control whether and when A/D

conversion is started

000 = No start (Should be used when clearing PDN to 0)

001 = Start conversion now

010 = Start conversion when edge selected by bit 27 of this register

occurs on CAP0.2/MAT0.2 pin

011= Start conversion when edge selected by bit 27 of this register

occurs on CAP0.0/MAT0.0 pin

100 = Start conversion when edge selected by bit 27 of this register

occurs on MAT0.1 pin

101 = Start conversion when edge selected by bit 27 of this register

occurs on MAT0.3 pin

110 = Start conversion when edge selected by bit 27 of this register

occurs on MAT1.0 pin

111 = Start conversion when edge selected by bit 27 of this register

occurs on MAT1.1 pin

• Bit 27 – EDGE

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 50 -

•

This bit is significant only when the Start field contains 010-111. In

these cases,

•

0 = Start conversion on a rising edge on the selected CAP/MAT signal

1 = Start conversion on a falling edge on the selected CAP/MAT signal

• Bit 31:28 – RESERVED

2. AD0GDR (ADC0 Global Data Register)

• AD0GDR is a 32-bit register.

• This register contains the ADC’s DONE bit and the result of the most

recent A/D conversion.

AD0GDR (ADC0 Global Data Register)

• Bit 5:0 – RESERVED

• Bits 15:6 – RESULT

When DONE bit is set to 1, this field contains 10-bit ADC result that has

a value in the range of 0 (less than or equal to VSSA) to 1023 (greater

than or equal to VREF).

• Bit 23:16 – RESERVED

• Bits 26:24 – CHN

These bits contain the channel from which ADC value is read.

e.g. 000 identifies that the RESULT field contains ADC value of channel

0.

• Bit 29:27 – RESERVED

• Bit 30 – Overrun

This bit is set to 1 in burst mode if the result of one or more conversions

is lost and overwritten before the conversion that produced the result in

the RESULT bits.

This bit is cleared by reading this register.

 Bit 31 – DONE

This bit is set to 1 when an A/D conversion completes. It is cleared when

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 51 -

this register is read and when the AD0CR is written.

If AD0CR is written while a conversion is still in progress, this bit is set

and new conversion is started.

3. ADGSR (A/D Global Start Register)

• ADGSR is a 32-bit register.

• Software can write to this register to simultaneously start conversions on

both ADC.

ADGSR (A/D Global Start Register)

• BURST (Bit 16), START (Bit <26:24>) & EDGE (Bit 27)

These bits have same function as in the individual ADC control registers

i.e. AD0CR & AD1CR. Only difference is that we can use these function

for both ADC commonly from this register.

4. AD0STAT (ADC0 Status Register)

• AD0STAT is a 32-bit register.

• It allows checking of status of all the A/D channels simultaneously.

AD0STAT (ADC0 Status Register)

• Bit 7:0 – DONE7:DONE0

These bits reflect the DONE status flag from the result registers for A/D

channel 7 - channel 0.

• Bit 15:8 – OVERRUN7:OVERRUN0

These bits reflect the OVERRUN status flag from the result registers for

A/D channel 7 - channel 0.

• Bit 16 – ADINT

This bit is 1 when any of the individual A/D channel DONE flags is

asserted and enables ADC interrupt if any of interrupt is enabled in

AD0INTEN register.

• Bit 31:17 – RESERVED

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 52 -

5. AD0INTEN (ADC0 Interrupt Enable)

• AD0INTEN is a 32-bit register.

• It allows control over which channels generate an interrupt when

conversion is completed.

AD0INTEN (ADC0 Interrupt Enable)

• Bit 0 – ADINTEN0

0 = Completion of a A/D conversion on ADC channel 0 will not generate

an interrupt

1 = Completion of a conversion on ADC channel 0 will generate an

interrupt

• Remaining ADINTEN bits have similar description as given

for ADINTEN0.

• Bit 8 – ADGINTEN

0 = Only the individual ADC channels enabled by ADINTEN7:0 will

generate interrupts

1 = Only the global DONE flag in A/D Data Register is enabled to

generate an interrupt

6. AD0DR0-AD0DR7 (ADC0 Data Registers)

• These are 32-bit registers.

• They hold the result when A/D conversion is completed.

• They also include flags that indicate when a conversion has been

completed and when a conversion overrun has occurred.

AD0 Data Registers Structure

• Bit 5:0 – RESERVED

• Bits 15:6 – RESULT

When DONE bit is set to 1, this field contains 10-bit ADC result that has

a value in the range of 0 (less than or equal to VSSA) to 1023 (greater

than or equal to VREF).

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 53 -

• Bit 29:16 – RESERVED

• Bit 30 – Overrun

This bit is set to 1 in burst mode if the result of one or more conversions

is lost and overwritten before the conversion that produced the result in

theRESULT bits.

This bit is cleared by reading this register.

• Bit 31 – DONE

This bit is set to 1 when an A/D conversion completes. It is cleared when

this register is read.

Steps for Analog to Digital Conversion

1. Configure the ADxCR (ADC Control Register) according to the need of

application.

2. Start ADC conversion by writing appropriate value to START bits in

ADxCR. (Example, writing 001 to START bits of the register 26:24,

conversion is started immediately).

3. Monitor the DONE bit (bit number 31) of the corresponding ADxDRy

(ADC Data Register) till it changes from 0 to 1. This signals completion of

conversion. We can also monitor DONE bit of ADGSR or the DONE bit

corresponding to the ADC channel in the ADCxSTAT register.

4. Read the ADC result from the corresponding ADC Data Register.

ADxDRy. E.g. AD0DR1 contains ADC result of channel 1 of ADC0.

PROGRAM:

#include<LPC214X.H>
/*

MACRO FOR ADC
 */

#define ch (1 << 3)
#define clk_div (3 << 8)
#define bst_on (1 << 16)

//#define bst_off (0 << 16)
#define clk_res (0 << 17)
#define operational (1 << 21)

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 54 -

#define start (0 << 24)
#define adc_init_macro ch | clk_div | bst_on | clk_res |

operational | start
/*

MACRO FOR LCD
 */
#define EN (1 << 28)
#define RW (1 << 29)
#define RS (1 << 22)
#define DATA (0Xff << 6)
#define port EN | RW | RS | DATA

/*
FUNCTION DECLARATIONS
 */

void adc_init(void);
void delay(int count);
void cmd(int c);
void data(char d);
void lcd_string(char *str);
void display(unsigned int n);

/*

GLOBAL VARIABLES
 */

unsigned int result;
float voltage;

char volt[18];
/*

FUNCTION DEFINITIONS
 */

void adc_init(void)
{

AD0CR = adc_init_macro;
}
void cmd(int c)
{

IOPIN0 = c << 6;
IOCLR0 = RW;
IOCLR0 = RS;
IOSET0 = EN;
delay(100);
IOCLR0 = EN;

}

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 55 -

void data(char d)
{

IOPIN0 = d << 6;
IOCLR0 = RW;
IOSET0 = RS;
IOSET0 = EN;
delay(100);
IOCLR0 = EN;

}

void lcd_string(char *str)
{

while(*str)
{

data(*str);
str++;
delay(20);

}
}
void display(unsigned int n)
{

if(n == 0)
data(n+0x30);

if(n)
{

}
}

display(n / 10);
data((n % 10) + 0x30);

void delay(int count)
{

int i,j;
for(i = 0;i < count;i++)

for(j = 0;j < 5000;j++);
}

/*
MAIN
 */

int main()
{

int c = 0;
IODIR0 |= port ;
PINSEL1|=0x10000000;

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 56 -

cmd(0x38);
cmd(0x0E);
cmd(0X80);
cmd(0X01);
adc_init();
lcd_string("ADC PROGRAM");
cmd(0X01);
while(1)
{

cmd(0x01);
while((AD0DR3 & (0x80000000)==0));
result = (AD0DR3 & (0X3FF << 6));
result = result >> 6;
lcd_string("ADC:");
cmd(0x86);
display(result);
voltage = ((result/1023.0) * 3.3);
cmd(0xc0);
sprintf(volt, "Voltage=%.2f V ", voltage);
lcd_string(volt);
//delay(1000);

}
}

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 57 -

Program No. 4

Aim: Interface a DAC and generate Triangular and Square
waveforms.

Digital to Analog Converter (DAC) are mostly used to generate analog signals (e.g.

sine wave, triangular wave etc.) from digital values.

• LPC2148 has 10-bit DAC with resistor string architecture. It also works

in Power down mode.

• LPC2148 has Analog output pin (AOUT) on chip, where we can get digital

value in the form of Analog output voltage.

• The Analog voltage on AOUT pin is calculated as ((VALUE/1024) * VREF).

Hence, we can change voltage by changing VALUE(10-bit digital value)

field in DACR (DAC Register).

• e.g. if we set VALUE = 512,

then, we can get analog voltage on AOUT pin as ((512/1024) * VREF) =

VREF/2.

AOUT (Analog Output)

This is Analog Output pin of LPC2148 DAC peripheral where we can get Analog

output voltage from digital value.

VREF (Voltage Reference)

Provides Voltage Reference for DAC.

VDDA& VSSA (Analog Power and Ground)

These are the power and ground pins for DAC. These should be same as VDD&

VSS.

Let’s see the Register used for DAC

DACR (DAC Register)

• DACR is a 32-bit register.

• It is a read-write register.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 58 -

DACR (DAC Register)

• Bit 5:0 – RESERVED

• Bits 15:6 – VALUE

This field contains the 10-bit digital value that is to be converted in to

Analog voltage. We can get Analog output voltage on AOUT pin and it is

calculated with the formula (VALUE/1024) * VREF.

• Bit 16 – BIAS

0 = Maximum settling time of 1µsec and maximum current is 700µA

1 = Settling time of 2.5µsec and maximum current is 350µA

Note that, the settling times are valid for a capacitance load on the AOUT

pin not exceeding 100 pF. A load impedance value greater than that

value will cause settling time longer than the specified time.

• Bit 31:17 – RESERVED

Programming Steps

• First, configure P0.25/AOUT pin as DAC output using PINSEL Register.

• Then set settling time using BIAS bit in DACR Register.

• Now write 10-bit value (which we want to convert into analog form) in

VALUE field of DACR Register.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 59 -

Refer for the program https://www.electronicwings.com/arm7/lpc2148-dac-

digital-to-analog-converter

PROGRAM:

SQUARE WAVE PROGRAM

#include "LPC214X.h"

unsigned int result=0x00000040,val;

int main()
{

PINSEL1|=0x00080000;

while(1)
{

while(1)
{

val =0xFFFFFFFF;
DACR=val;

{

break;
}

}
while(1)
{

val =0x00000000;
DACR=val;

{
break;

}
}

}

}

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 60 -

TRIANGLE WAVE PROGRAM
#include "LPC214X.h"

unsigned int value;

int main()
{

PINSEL1|=0x00080000;

while(1)
{

value = 0;
while (value != 1023)
{

DACR = ((1<<16) | (value<<6));
value++;

}
while (value != 0)
{

DACR = ((1<<16) | (value<<6));
value--;

}
}

}

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 61 -

Program No. 5 Date:

Aim: Interface a 4x4 keyboard and display the key code on an LCD.

PROGRAM:

#include <LPC214x.H> /* LPC214x definitions */
#include "lcd.h"

///
// Matrix Keypad Scanning Routine
//
// COL1 COL2 COL3 COL4
// 0 1 2 3 ROW 1
// 4 5 6 7 ROW 2
// 8 9 A B ROW 3
// C D E F ROW 4
//

#define SEG7_CTRL_DIR IO0DIR
#define SEG7_CTRL_SET IO0SET
#define SEG7_CTRL_CLR IO0CLR

#define COL1 (1 << 16)
#define COL2 (1 << 17)
#define COL3 (1 << 18)
#define COL4 (1 << 19)

#define ROW1 (1 << 20)
#define ROW2 (1 << 21)

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 62 -

#define ROW3 (1 << 22)
#define ROW4 (1 << 23)

#define COLMASK (COL1 | COL2 | COL3 | COL4)
#define ROWMASK (ROW1 | ROW2 | ROW3 | ROW4)

#define KEY_CTRL_DIR IO1DIR
#define KEY_CTRL_SET IO1SET
#define KEY_CTRL_CLR IO1CLR
#define KEY_CTRL_PIN IO1PIN

/////////////// COLUMN WRITE /////////////////////
void col_write(unsigned char data)
{

unsigned int temp=0;

temp=(data << 16) & COLMASK;

KEY_CTRL_CLR |= COLMASK;
KEY_CTRL_SET |= temp;

}

///////////////////////////////// MAIN
///////////////////////////////////////
int main (void)
{
unsigned char key, i;
unsigned char rval[] = {0x7,0xB,0xD,0xE,0x0};
unsigned char keyPadMatrix[] =
{

'4','8','B','F',
'3','7','A','E',
'2','6','0','D',
'1','5','9','C'

};

init_lcd();

KEY_CTRL_DIR |= COLMASK; //Set COLs as Outputs
KEY_CTRL_DIR &= ~(ROWMASK); // Set ROW lines as Inputs

lcd_putstring16(0,"Press HEX Keys..");
lcd_putstring16(1,"Key Pressed = ");

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 63 -

while (1)
{

key = 0;
for(i = 0; i < 4; i++)
{

// turn on COL output one by one col_write(rval[i]);

// read rows - break when key press detected
if (!(KEY_CTRL_PIN & ROW1))

break;

key++;
if (!(KEY_CTRL_PIN & ROW2))

break;

key++;
if (!(KEY_CTRL_PIN & ROW3))

break;

key++;
if (!(KEY_CTRL_PIN & ROW4))

break;

key++;
}

if (key == 0x10)

lcd_putstring16(1,"Key Pressed = ");
else

{

}
}

lcd_gotoxy(1,14);
lcd_putchar(keyPadMatrix[key]);

}

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 64 -

Program No. 6 Date:

Aim: Demonstrate the use of an external interrupt to toggle an LED
On/Off.

#include <LPC214x.H> // LPC2148 MPU Register
/* pototype section */
void delay_led(unsigned long int); // Delay Time Function
int main(void)
{

IO1DIR = 0x00FF0000; // Set GPIO0.7,6,5,4 = Output
// Loop Blink LED on GPIO0.16 //
while(1) // Loop Continue
{
IO1CLR = 0x00FF0000; // Clear Pin P0.7,6,5,4 (ON LED)
delay_led(150000); // Display LED Delay
IO1SET = 0x00FF0000; // Set Pin P0.7,6,5,4 (OFF LED)
delay_led(150000); // Display LED Delay
}
}
/***********************/
/* Delay Time Function */
/***********************/
void delay_led(unsigned long int count1)
{
while(count1 > 0) {count1--;} // Loop Decrease Counter
}

OR (FIRST ONE IS EASY)

#include <LPC214x.H>
int i;
void init_ext_interrupt(void);
 irq void Ext_ISR(void);
int main (void)
{ init_ext_interrupt(); // initialize the external interrupt

while (1)
{

}
}
void init_ext_interrupt() // Initialize Interrupt
{

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 65 -

EXTMODE = 0x4; //Edge sensitive mode on EINT2
EXTPOLAR &= ~(0x4); //Falling Edge Sensitive
PINSEL0 = 0x80000000; //Select Pin function P0.15 as EINT2
/* initialize the interrupt vector */
VICIntSelect &= ~ (1<<16); // EINT2 selected as IRQ 16
VICVectAddr5 = (unsigned int)Ext_ISR; // address of the ISR
VICVectCntl5 = (1<<5) | 16; //
VICIntEnable = (1<<16); // EINT2 interrupt enabled
EXTINT &= (0x4);

}
 irq void Ext_ISR(void) // Interrupt Service Routine-ISR
{

IO1DIR |= (1<<16);
IO1SET |= (1<<16); // Turn OFF Buzzer
for(i=0; i<2000000;i++);
IO1CLR |= (1<<16); // Turn ON Buzzer
EXTINT |= 0x4; //clear interrupt
VICVectAddr = 0; // End of interrupt execution

}

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 66 -

Program No. 7 Date:

Aim: Display the Hex digits 0 to F on a 7-segment LED interface,
with an appropriate delay in between

#include <LPC214x.H>
void delay_led(unsigned long int);
int main(void)
{

IO0DIR = 0x000007FC;
while(1)
{
IO0CLR = 0x00000FFF;
IO0SET = 0x00000604;
delay_led(15000000);
IO0CLR = 0x00000FFF;
IO0SET = 0x000007E4;
delay_led(15000000);
IO0CLR = 0x00000FFF;
IO0SET = 0x00000648;
delay_led(15000000);
IO0CLR = 0x00000FFF;
IO0SET = 0x00000618;
delay_led(15000000);
IO0CLR = 0x00000FFF;
IO0SET = 0x00000730;
delay_led(15000000);
IO0CLR = 0x00000FFF;
IO0SET = 0x00000690;
delay_led(15000000);
IO0CLR = 0x00000FFF;
IO0SET = 0x00000680;
delay_led(15000000);
IO0CLR = 0x00000FFF;
IO0SET = 0x0000063C;
delay_led(15000000);
IO0CLR = 0x00000FFF;
IO0SET = 0x00000600;
delay_led(15000000);
IO0CLR = 0x00000FFF;
IO0SET = 0x00000630;
delay_led(15000000);
IO0CLR = 0x00000FFF;
IO0SET = 0x00000620;

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 67 -

delay_led(15000000);
IO0CLR = 0x00000FFF;
IO0SET = 0x00000780;
delay_led(15000000);
IO0CLR = 0x00000FFF;
IO0SET = 0x000006C4;
delay_led(15000000);
IO0CLR = 0x00000FFF;
IO0SET = 0x00000708;
delay_led(15000000);
IO0CLR = 0x00000FFF;
IO0SET = 0x000006C0;
delay_led(15000000);
IO0CLR = 0x00000FFF;
IO0SET = 0x000006E0;
delay_led(15000000);
IO0CLR = 0x00000FFF;
}

}
void delay_led(unsigned long int count1)
{
while(count1 > 0) {count1--;}
}

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 68 -

REFERENCES:

Textbooks:

1. Andrew N Sloss, Dominic Symes and Chris Wright, ARM system

developers guide, Elsevier, Morgan Kaufman publishers, 2008.

2. Shibu K V, “Introduction to Embedded Systems”, Tata McGraw Hill

Education, Private Limited, 2nd Edition.

Reference Books:

1. Raghunandan..G.H, Microcontroller (ARM) and Embedded System,

Cengage learning

Publication,2019

2. The Insider’s Guide to the ARM7 Based Microcontrollers, Hitex Ltd.,1st

edition, 2005.

3. Steve Furber, ARM System-on-Chip Architecture, Second Edition,

Pearson, 2015.

4. Raj Kamal, Embedded System, Tata McGraw-Hill Publishers, 2nd

Edition, 2008.

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 69 -

VIVA QUESTIONS:

1. What is the processor used by ARM7?

a) 8-bit CISC

b) 8-bit RISC

c) 32-bit CISC

d) 32-bit RISC

2. What the instruction set used by ARM7?

a) 16-bit instruction set

b) 32-bit instruction set

c) 64-bit instruction set

d) 8-bit instruction set

3. How many registers are there in ARM7?

a. 35 register (28 GPR and 7 SPR)

b. 37 register (31 GPR and 7 SPR)

c. 37 register (28 GPR and 9 SPR)

d. 35 register(30 GPR and 5 SPR)

 Explanation: ARM7TDMI has 37 registers(31 GPR and 6 SPR).

 All these designs use a Von Neumann architecture, thus the few versions comprising a

 cache do not separate data and instruction caches.

4. ARM7 has an in-built debugging device?
a. True

b. False

5. What is the capability of ARM7 instruction for a second?

a. 110 MIPS

b. 150 MIPS

c. 125 MIPS

d. 130 MIPS

6. We have no use of having silicon customization?

a. True

b. False
7. Which of the following has the same instruction set as ARM7?

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 70 -

a. ARMv3
b. ARM71a0
c. ARMv4T

 8. What are T,D,M,I stands for in ARM7TDMI?

 a. Timer, Debug ,Multiplexer, ICE

 b. Timer, Debug, Multiplier, ICE

 c. Timer, Debug, Modulation, ICE

 d. Timer, Debug, Multiplexer, IS

 9. ARM stands for ----------------

 a. Advanced RISC Machine

 b. Advanced RISC Methodology

 c. Advanced Reduced Machine

 d. Advanced Reduced Methodology

 10. What are the profiles for ARM architecture?
a) A,R
b) A,M
c) A,R,M
d) R,M

11. ARM7DI operates in which mode?

a) Big Endian

b) Little Endian

c) Both big and little Endian

d) Neither big nor little Endian

12. In which of the following ARM processors virtual memory is present?

a) ARM7DI

b) ARM7TDMI-S

c) ARM7TDMI

d) ARM7EJ-S

13. How many instructions pipelining is used in ARM7EJ-S?

a) 3-Stage

b) 4-Stage

c) 5-Stage

d)2-stage

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 71 -

 14. How many bit data bus is used in ARM7EJ-s?

 a) 32-bit

 b) 16-bit

 c) 8-bit

 d) Both 16 and 32 bit

15.What is the cache memory for ARM710T?

 a) 12Kb

 b) 16Kb

 c) 32Kb

 d) 8Kb

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 72 -

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 73 -

ADDITIONAL PROGRAMS:

1. Write ARM assembly language program to add two 32 bit
numbers.

AREA add32, CODE, READONLY
ENTRY
MAIN

LDR R0, =Value1
LDR R1, [R0]
ADD R0, R0, #0*4
LDR R2, [R0]
ADD R1, R1, R2
LDR R0, =Result
STR R1, [R0]
SWI &11; TERMINATION

Value1 DCD &37E3C123
Value2 DCD &367402AA
Result DCD 0

2. Write ARM assembly language program to add two 64 bit
numbers.

AREA add64, CODE, READONLY
ENTRY
MAIN

LDR R0, =Value1 ;pointer to first value
LDR R1, [R0] ;load first part of value1
LDR R2, [R0, #4] ; load lower part of value1
LDR R0, =Value2 ;pointer to second value
LDR R3, [R0] ;load upper part of value2
LDR R4, [R0, #4] ; load lower part of value2
ADDS R6, R2, R4 ;add lower 4 bytes and set carry flag
ADC R5, R1, R3 ;add upper 4 bytes including carry
LDR R0, =Result ;pointer to result
STR R5, [R0] ;store upper part of result
STR R6, [R0, #4] ;store lower part of result
SWI &11

Value1 DCD &12A2E640, &F2100123
Value2 DCD &001019BF, &40023F51
Result DCD 0

END

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 74 -

DATA EXCHANGE

area data_exch,code,readonly
entry

ldr r0,=0x40000000
ldr r1,=0x40000044
mov r4,#09

loop ldr r2,[r0]

mov r5,r2
ldr r6,[r1]
str r6,[r0],#04
str r5,[r1],#04
subs r4,#01
cmp r4,#00
bne loop

stop b stop

end

BLOCK OF DATA TRANSFER

area data_trans,code,readonly
entry

ldr r0,=0x40000000
ldr r1,=0x40000044
mov r4,#09

loop ldr r2,[r0],#04

str r2,[r1],#04
subs r4,#01
cmp r4,#00
bne loop

stop b stop

end

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 75 -

3. To interface LCD with ARM processor-- ARM7TDMI/LPC2148.
Write and execute programs in C language for displaying text messages
and numbers on LCD

#include <LPC214x.h>

void cmd(unsigned char d);
void datal(unsigned char t);
void delay (int count);

int main()
{
int i;
unsigned char name[]={"CBVAR"};

IO0DIR=0x30403C00;
delay(100);

cmd(0x02); //cursor home
command
cmd(0x01); //clear display
command
cmd(0x28); //4-bit mode
entry command(0x38 for 8 bit mode)
cmd(0x06); //entry mode
command
cmd(0x0C); //display on
cursor off command
//cmd(0xC0); //LCD bottom
line display command

for (i=0;i<11;i++)
{
datal(name[i]);
}
while(1);
}

void cmd(unsigned char d)
{
int a=0;
a = d | 0xFFFFFF0F;
IO0CLR |= 0x00003C00;
a=a<<6;

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 76 -

IO0CLR = 0x20400000;
IO0SET = 0x10000000;
IO0SET =(IO0SET | 0x00003c00)&a;
delay(1000);
IO0CLR = 0x10000000;

a=0x0;
d=d<<4;
a = d | 0xFFFFFF0F;
IO0CLR |= 0x00003C00;
a=a<<6;
IO0CLR = 0x20400000;
IO0SET = 0x10000000;
IO0SET = (IO0SET | 0x00003C00)&a;
delay(1000);
IO0CLR = 0x10000000;
}
void datal(unsigned char t)
{
int b=0;
b = t|0xFFFFFF0F;
IO0CLR |= 0x00003C00;
b=b<<6;
IO0SET = 0x10400000;
IO0SET = (IO0SET | 0x00003C00)&b;
delay(1000);
IO0CLR = 0x10000000;

b=0x0;
t=t<<4;
b=t|0xFFFFFF0F;
IO0CLR |= 0x00003C00;
b=b<<6;
IO0SET = 0x10400000;
IO0SET = (IO0SET | 0x00003C00)&b;
delay(1000);
IO0CLR = 0x10000000;
}
void delay(int count)
{
int j=0, i=0;
for (j=0;j<count;j++)
for (i=0;i<35;i++);
}

21CS43, MES-LAB

Dept. of AD, CIT, Gubbi- 572 216 Page No. - 77 -

ASCENDING AND DESCENDING ORDER PROGRAM IN ANOTHER
METHOD:

AREA DESCENDING, CODE, READONLY

entry
mov r5,#05

top mov r0,r5
mov r1, #0x40000000

pass ldr r2,[r1]
add r1,#04
ldr r3,[r1]
cmp r2,r3
bge/ble loop
str r2,[r1]
mov r4,r1
sub r4,#04
str r3,[r4]

loop sub r0,#01
cmp r0,#00
bne pass
subs r5,#01
bne top

stop b stop

END ; Mark end of file

