
         Channabasaveshwara Institute of Technology 
 (Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi) 

 (NAAC Accredited & ISO 9001:2015 Certified Institution)   
NH 206 (B.H. Road), Gubbi, Tumkur  572 216. Karnataka. 

 

 

 

 

 

 

 

IOT LABORATORY 
MANUAL- [22SCSL17] 

 

 

 

 

 

 

 

 

 

Department of Computer Science & Engineering 

MTech - I Semester 

 

Academic Year:  2022-23 

 

Prepared by,  

                                                                          Mr. Dharaneshkumar M L 
Asst. Professor,  

Dept of CSE,  
                                                                                         CIT, Gubbi 

 

 



 

 

 
Internet of Things Laboratory 

Course Code 22SCSL17 CIE Marks 50

Teaching Hours/Week (L:T:P: S) 1:2:0 SEE Marks 50
Credits 02 Exam Hours 03

Course objectives: 
 

 Describe what IoT is and how it works today 
 Design and program IoT devices 
 Use real IoT protocols for communication 

                                               Experiments 

1 Transmit a string using UART 

2 
Point-to-Point communication of two Motes over the radio frequency 

3 Multi-point to single point communication of Motes over the radio frequency. AN
(Subnetting). 

4 
I2C protocol study 

5 
Reading Temperature and Relative Humidity value from the sensor 

6 Study of Connectivity and Configuration of Raspberry-Pi/ Beagle Board circuit with
basic peripherals, LEDs, Understanding GPIO and its use in program. 

7 Study of different operating systems for Raspberry Pi / Beagle board. Understanding the
process of OS installation on Raspberry  Pi/ Beagle board. 

8 Familiarization with the concept of IOT, Arduino / Raspberry Pi and perform necessary
software installation. 

 
Course outcomes (Course Skill Set): 

At the end of the course the student will be able to: 
 Apply key Internet applications and their protocols, and ability to develop their own 

applications (e.g. Client Server applications, Web Services) using the sockets API.
 Design and evaluate application layer protocol 
 Analyze the vulnerabilities in any computing system and hence be able to design a security

solution. 
 Identify the security issues in the network and resolve it. 
 Evaluate security mechanisms using rigorous approaches, including theoretical. 



 

Assessment Details (both CIE and SEE) 

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) 
is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. A student shall be 
deemed to have satisfied the academic requirements and earned the credits allotted to each course. 
The student has to secure not less than 40%of maximum marks in the semester-end examination 
(SEE). In total of CIE and SEE student has to secure 50% maximum marks of the course.

Continuous Internal Evaluation (CIE): 
CIE marks for the practical course is 50 Marks. 
The split-up of CIE marks for record/ journal and test are in the ratio 60:40. 

 Each experiment to be evaluated for conduction with observation sheet and record write- up.
Rubrics for the evaluation of the journal/write-up for hardware/software experiments designed 
by the faculty who is handling the laboratory session and is made known to students at the 
beginning of the practical session. 

 Record should contain all the specified experiments in the syllabus and each experiment 
write-up will be evaluated for 10 marks. 

 Total marks scored by the students are scaled downed to 30 marks (60% of maximum
marks). 

 Weightage to be given for neatness and submission of record/write-up on time. 

 Department shall conduct 02 tests for 100 marks, the first test shall be conducted after the 8th

week of the semester and the second test shall be conducted after the 14th week of the semester. 

 In each test, test write-up, conduction of experiment, acceptable result, and procedural
knowledge will carry a weightage of 60% and the rest 40% for viva-voce. 

 
ability. 

 The average of 02 tests is scaled down to 20 marks (40% of the maximum marks). 
The Sum of scaled-down marks scored in the report write-up/journal and average marks of two
tests is the total CIE marks scored by the student. 

Semester End Evaluation (SEE): 
SEE marks for the practical course is 50 Marks. 
SEE shall be conducted jointly by the two examiners of the same institute, examiners are
appointed by the University. 

All laboratory experiments are to be included for practical examination. 
(Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be 

strictly adhered to by the examiners. OR based on the course requirement evaluation rubrics shall 
be decided jointly by examiners. 

Students can pick one question (experiment) from the questions lot prepared by the internal
/External examiners jointly. 

Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly



 

by examiners. 

General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and 
result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 
marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics 
shall be decided by the examiners) 

Change of experiment is allowed only once and 10% Marks allotted to the procedure part to be 
made zero. 
The duration of SEE is 03 hours 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   1 
 

PROGRAM 1 - TRANSMIT A STRING USING UART 

Components required: Arduino board (UNO), data cable, connecting wires 

UART COMMUNICATION 

UART stands for Universal Asynchronous Receiver/Transmitter. It’s not a communication 

protocol like SPI and I2C, but a physical circuit in a microcontroller, or a stand- alone IC. A 

UART’s main purpose is to transmit and receive serial data. 

The UART that is going to transmit data receives the data from a data bus. The data bus is 

used to send data to the UART by another device like a CPU, memory, or microcontroller. Data 

is transferred from the data bus to the transmitting UART in parallel form. After the transmitting 

UART gets the parallel data from the data bus, it adds a start bit, a parity bit, and a stop bit, creating 

the data packet. Next, the data packet is output serially, bit by bit at the Tx pin. The receiving 

UART reads the data packet bit by bit at its Rx pin. The receiving UART then converts the data 

back into parallel form and removes the start bit, parity bit, and stop bits. Finally, the receiving 

UART transfers the data packet in parallel to the data bus on the receiving end. 

Steps: 

1. Type the program in the Arduino IDE. 

2. Connect the Arduino board with CPU using the cable 

3. Save the program 

4. In Arduino IDE, Tools -> Board -> Select Arduino UNO 

5. In Arduino IDE, Tools -> Port -> Select port for Arduino UNO 

6. Verify the program 

7. Upload the program 

8. Click on serial monitor (right hand side corner) for output. 
 
 

Code: 

void setup() 

{ 

Serial.begin(9600); 

} 

void loop() 

{ 

Serial.println("HELLO WORLD"); 

delay(1000); 

} 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   2 
 

Output: 
 

String displayed in serial monitor 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   3 
 

PROGRAM 2 - POINT-TO-POINT COMMUNICATION OF TWO MOTES OVER 

THE RADIO FREQUENCY. 

Components required: Two Arduino boards (UNO), data cables, connecting wires, two 

NRF24L01 modules, one LED. 

 
NRF24L01 Transceiver Module (Radio Frequency) 

It uses the 2.4 GHz band and it can operate with baud rates from 250 kbps up to 2 Mbps. 

If used in open space and with lower baud rate its range can reach up to 100 meters. 

The module can use 125 different channels which give a possibility to have a network 

of 125 independently working modems in one place. Each channel can have up to 6 addresses, 

or each unit can communicate with up to 6 other units at the same time. 

The power consumption of this module is just around 12mA during transmission, which 

is even lower than a single LED. The operating voltage of the module is from 1.9 to 3.6V, but 

the good thing is that the other pins tolerate 5V logic, so we can easily connect it to an Arduino 

without using any logic level converters. 

Three of these pins are for the SPI communication and they need to be connected to the 

SPI pins of the Arduino, but note that each Arduino board have different SPI pins. The pins 

CSN and CE can be connected to any digital pin of the Arduino board and they are used for 

setting the module in standby or active mode, as well as for switching between transmit or 

command mode. The last pin is an interrupt pin which doesn’t have to be used. 

 

 
NRF24L01 PINOUT 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   4 
 

Arduino Uno and NRF24L01 connection (same connection for transmitter and receiver) 

Arduino NRF24L01 

VCC 3.3V 

GND GND 

Pin 8 CSN 

Pin 7 CE 

Pin 13 SCK 

Pin 11 MOSI 

Pin 12 MISO 

LED connection: positive (long wire of LED) to pin 2 of Arduino Uno and negative 

to GND 

 
Steps: 

1. Import RF24Network-master.zip to Arduino IDE via Sketch->Include Library-> ADD 

.Zip library 

2. Import RF24-master.zip to Arduino IDE via Sketch->Include Library-> ADD .Zip 

library 

3. Type the transmitter code in Arduino IDE and select board and port for first Arduino 

uno. Upload the code to transmitter Arduino (first Arduino). 

4. Type the receiver code in another Arduino IDE and select board and port for second 

Arduino uno. Upload the code to receiver Arduino ( second Arduino). 

5. If data sent in the code is ‘1’ then LED in receiver will be ON otherwise LED will be 

OFF. 

 
Transmitter code 

#include <SPI.h> 

#include <nRF24L01.h> 

#include <RF24.h> 

RF24 radio(7, 8); // CE, CSN 

const byte address[6] = "00001"; 

void setup() { 

radio.begin(); 

radio.openWritingPipe(address); 

radio.setPALevel(RF24_PA_MIN); 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   5 
 

radio.stopListening(); 

} 

void loop() { 

int text= 1; 

radio.write(&text, sizeof(text)); 

delay(1000); 

} 
 
 

Receiver Code 

#include <SPI.h> 

#include <nRF24L01.h> 

#include <RF24.h> 

RF24 radio(7, 8); // CE, CSN 

const byte address[6] = "00001"; 

void setup() { 

Serial.begin(9600); 

pinMode(2, OUTPUT); 

radio.begin(); 

radio.openReadingPipe(0, address); 

radio.setPALevel(RF24_PA_MIN); 

radio.startListening(); 

} 

void loop() { 

if (radio.available()) { 

int text,t; 

radio.read(&text, sizeof(text)); 

delay(1000); 

Serial.println(text); 

if(text==1) 

{ 

digitalWrite(2, HIGH); 

} 

else 

{ 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   6 
 

digitalWrite(2, LOW); 

} 

} 

} 

O
u
t
p
u
t 

 

 

Transmitter 
 

 

Receiver with data 1 (LED ON) 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   7 
 

 

Receiver with data 1 in serial monitor 
 

Receiver with data 0 (LED OFF) 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   8 
 

 
 

Receiver with data 0 in serial monitor 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   9 
 

PROGRAM 3 - MULTI-TO-POINT COMMUNICATION OF TWO MOTES OVER 

THE RADIO FREQUENCY. 

 
Components required: Three Arduino boards (UNO), data cables, connecting wires, three 

NRF24L01 modules, two LED. 

 
NRF24L01 Transceiver Module (Radio Frequency) 

It uses the 2.4 GHz band and it can operate with baud rates from 250 kbps up to 2 Mbps. 

If used in open space and with lower baud rate its range can reach up to 100 meters. 

The module can use 125 different channels which give a possibility to have a network 

of 125 independently working modems in one place. Each channel can have up to 6 addresses, 

or each unit can communicate with up to 6 other units at the same time. 

The power consumption of this module is just around 12mA during transmission, which 

is even lower than a single LED. The operating voltage of the module is from 1.9 to 3.6V, but 

the good thing is that the other pins tolerate 5V logic, so we can easily connect it to an Arduino 

without using any logic level converters. 

Three of these pins are for the SPI communication and they need to be connected to the 

SPI pins of the Arduino, but note that each Arduino board have different SPI pins. The pins 

CSN and CE can be connected to any digital pin of the Arduino board and they are used for 

setting the module in standby or active mode, as well as for switching between transmit or 

command mode. The last pin is an interrupt pin which doesn’t have to be used. 

 

 
NRF24L01 PINOUT 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   10 
 

Three Arduino Uno and three NRF24L01 connections (same connection for two 

transmitter and single receiver) 

Arduino NRF24L01 

VCC 3.3V 

GND GND 

Pin 8 CSN 

Pin 7 CE 

Pin 13 SCK 

Pin 11 MOSI 

Pin 12 MISO 

LED1(RED) connection: positive (long wire of LED) to pin 2 of Arduino Uno and 

negative to GND 

LED2(Green) connection: positive (long wire of LED) to pin 4 of Arduino Uno and 

negative to GND 

 
Steps: 

1. Import RF24Network-master.zip to Arduino IDE via Sketch->Include Library-> ADD 

.Zip library 

2. Import RF24-master.zip to Arduino IDE via Sketch->Include Library-> ADD .Zip 

library 

3. Type the transmitter1 code in Arduino IDE and select board and port for first Arduino 

uno. Upload the transmitter1 code to Arduino (first Arduino). 

4. Type the trasmitter2 code in another Arduino IDE(2nd) and select board and port for 

second Arduino uno. Upload the trasmitter2 code to Arduino ( second Arduino). 

5. Type the receiver code in another Arduino IDE(3rd) and select board and port for 3rd 

Arduino uno. Upload the receiver code to Arduino (Third Arduino). 

6. If data sent in the transmitter1 code is ‘1’ then LED1(red) in receiver will be ON 

otherwise LED will be OFF. 

7. If data sent in the transmitter2 code is ‘3’ then LED2(green) in receiver will be ON 

otherwise LED will be OFF. 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   11 
 

Transmitter1 code 
#include <SPI.h> 

#include <nRF24L01.h> 

#include <RF24.h> 

RF24 radio(7, 8); // CE, CSN 

const byte address[6] = "00001"; 

void setup() { 

radio.begin(); 

radio.openWritingPipe(address); 

radio.setPALevel(RF24_PA_MIN); 

radio.stopListening(); 

} 

void loop() { 

int text= 1; 

radio.write(&text, sizeof(text)); 

delay(1000); 

} 

 
Transmitter2 code 

#include <SPI.h> 

#include <nRF24L01.h> 

#include <RF24.h> 

RF24 radio(7, 8); // CE, CSN 

const byte address[6] = "00001"; 

void setup() { 

radio.begin(); 

radio.openWritingPipe(address); 

radio.setPALevel(RF24_PA_MIN); 

radio.stopListening(); 

} 

void loop() { 

int t = 3; 

radio.write(&t, sizeof(t)); 

delay(1000); 

} 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   12 
 

Receiver code 
#include <SPI.h> 

#include <nRF24L01.h> 

#include <RF24.h> 

RF24 radio(7, 8); // CE, CSN 

const byte address[6] = "00001"; 

void setup() { 

Serial.begin(9600); 

pinMode(2, OUTPUT); 

pinMode(4, OUTPUT); 

radio.begin(); 

radio.openReadingPipe(0, address); 

radio.setPALevel(RF24_PA_MIN); 

radio.startListening(); 

} 

void loop() { 

if (radio.available()) { 

int text,t; 

radio.read(&text, sizeof(text)); 

delay(1000); 

radio.read(&t, sizeof(t)); 

Serial.println(t); 

Serial.println(text); 

if(text==1) 

{ 

digitalWrite(2, HIGH); 

} 

else 

{ 

digitalWrite(2, LOW); 

} 
 
 

if(t==3) 

{ 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   13 
 

digitalWrite(4, HIGH); 

} 

else 

{ 

digitalWrite(4, LOW); 

} 

} 

} 

Output 

 
Two Transmitters 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   14 
 

 
Receiver Side: Data received from transmitter1 is 1 and transmitter2 is 3 

(Both Red and Green LED is ON) 
 

 

Data received from transmitter1 is 1 and transmitter2 is 3 in serial monitor of receiver 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   15 
 

 

Receiver Side: Data received from transmitter1 is 0 and transmitter2 is 3 
(Red is OFF and Green LED is ON) 

 
 

Data received from transmitter1 is 0 and transmitter2 is 3 in serial monitor of receiver 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   16 
 

 
Receiver Side: Data received from transmitter1 is 1 and transmitter2 is 0 

(Red is ON and Green LED is OFF) 
 
 

 
Data received from transmitter1 is 1 and transmitter2 is 0 in serial monitor of receiver 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   17 
 

 
 

 
Receiver Side: Data received from transmitter1 is 0 and transmitter2 is 0 

(Both Red and Green LED is OFF) 
 

Data received from transmitter1 is 0 and transmitter2 is 0 in serial monitor of receiver 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   18 
 

PROGRAM 4: I2C PROTOCOL STUDY  
 
I2C Protocol: 

I2C is a serial protocol for two-wire interface to connect low-speed devices like 

microcontrollers, EEPROMs, A/D and D/A converters, I/O interfaces and other similar 

peripherals in embedded systems. 

I2C combines the best features of SPI and UARTs. With I2C, you can connect multiple 

slaves to a single master (like SPI) and you can have multiple masters controlling single, or 

multiple slaves. This is really useful when you want to have more than one microcontroller 

logging data to a single memory card or displaying text to a single LCD. Like UART 

communication, I2C only uses two wires to transmit data between devices: 
 

 

SDA (Serial Data) – The line for the master and slave to send and receive data. 

SCL (Serial Clock) – The line that carries the clock signal. 

I2C is a serial communication protocol, so data is transferred bit by bit along a single 

wire (the SDA line). Like SPI, I2C is synchronous, so the output of bits is synchronized to the 

sampling of bits by a clock signal shared between the master and the slave. The clock signal 

is always controlled by the master. 

 
Components required: Arduino boards (UNO), data cable, connecting wires, DHT11 Sensor, one 

LCD with IIC/I2C Module. 

DHT11 sensor: Measures temperature and Humidity. Operates between 3.3-5V 
 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   19 
 

IIC/I2C Module 
This is an I2C interface for 16*2 LCD Display. 

 

 

 

 

Conne
ctions: 

LCD with I2C module interfaced with Arduino uno 
 
 
DHT11 Arduino Uno 

Data Pin 12 

VCC 3.3V 

NC (no Connection) 

GND GND 

IIC/I2C Arduino Uno 

VCC 5V 

GND GND 

SDA A4 

SCL A5 

I2C Module to LCD (16 pins of I2C module directly connected to 16 pins of LCD) 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   20 
 

Steps: 

1. Import DHL-sensor-library.zip to Arduino IDE via Sketch->Include Library-> ADD .Zip 

library 

2. Import Newliquidcrystal_1.3.5.zip to Arduino IDE via Sketch->Include Library-> ADD 

.Zip library 

3. Import LiquidCrystal_I2C.zip to Arduino IDE via Sketch->Include Library-> ADD .Zip 

library 

4. Import Adafruit-sensor-master.zip to Arduino IDE via Sketch->Include Library-> ADD 

.Zip library 

5. Type the code and connect to components. Select the board and port and upload the 

code. 

6. Verify the output in serial monitor and also on LCD screen. 
 

Overall Setup 
 
 
Code 

#include "DHT.h" 

#define DHTPIN 12 // what digital pin we're connected to 

#define DHTTYPE DHT11 // DHT 11 

DHT dht(DHTPIN, DHTTYPE); 

#include <Wire.h> // Comes with Arduino IDE 

#include <LiquidCrystal_I2C.h> 

// Set the LCD I2C address 

LiquidCrystal_I2C lcd(0x27, 16,2); 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   21 
 

void setup( ) 

{ 

Serial.begin(9600); 

lcd.init( ); 

lcd.backlight( ); 

Serial.println("Temp and Humidity Sensor Test"); 

dht.begin( ); 

} 

void loop( ) { 

int h = dht.readHumidity(); 

int t = dht.readTemperature(); 

lcd.clear( ); 

// set the cursor to (0,0): 

lcd.setCursor(0, 0); 

lcd.print("Temp: "); 

lcd.print(t); 

lcd.print("C"); 

lcd.setCursor(3,1); 

lcd.print("Humidity: "); 

lcd.print(h); 

lcd.print("%"); 

Serial.print("Temp: "); 

Serial.print(t); 

Serial.print("C, Humidity: "); 

Serial.print(h); 

Serial.println("%"); 

delay(2000); 

} 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   22 
 

Output 
 

Temperature and humidity display in Serial Monitor 
 

 
Temperature and humidity display on LCD screen 

 

 

 

 

 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   23 
 

PROGRAM 5: READING TEMPERATURE AND RELATIVE HUMIDITY VALUE 
FROM THE SENSOR 

 
Components required: Arduino boards (UNO), data cable, connecting wires, DHT11 Sensor. 

  

DHT11 sensor: Measures temperature and Humidity. Operates between 3.3-5V 
 

 
 
 

  
 

 
 

 
How to Set Up the DHT11 on an Arduino



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   24 
 

Steps: 

1. Import DHL-sensor-library.zip to Arduino IDE via Sketch->Include Library-> ADD .Zip 

library 

2. Import Newliquidcrystal_1.3.5.zip to Arduino IDE via Sketch->Include Library-> ADD 

.Zip library 

3. Import LiquidCrystal_I2C.zip to Arduino IDE via Sketch->Include Library-> ADD .Zip 

library 

4. Import Adafruit-sensor-master.zip to Arduino IDE via Sketch->Include Library-> ADD 

.Zip library 

5. Type the code and connect to components. Select the board and port and upload the 

code. 

6. Verify the output in serial monitor and also on LCD screen. 
 

Overall Setup 
 
 
Code 

#include "DHT.h" 

#define DHTPIN 12 // what digital pin we're connected to 

#define DHTTYPE DHT11 // DHT 11 

DHT dht(DHTPIN, DHTTYPE); 

#include <Wire.h> // Comes with Arduino IDE 

#include <LiquidCrystal_I2C.h> 

// Set the LCD I2C address 

LiquidCrystal_I2C lcd(0x27, 16,2); 



22SCSL17 - Internet of Things Laboratory      M.Tech- I Sem 

Dept. of CSE, CIT, Gubbi   25 
 

void setup( ) 

{ 

Serial.begin(9600); 

lcd.init( ); 

lcd.backlight( ); 

Serial.println("Temp and Humidity Sensor Test"); 

dht.begin( ); 

} 

void loop( ) { 

int h = dht.readHumidity(); 

int t = dht.readTemperature(); 

lcd.clear( ); 

// set the cursor to (0,0): 

lcd.setCursor(0, 0); 

lcd.print("Temp: "); 

lcd.print(t); 

lcd.print("C"); 

lcd.setCursor(3,1); 

lcd.print("Humidity: "); 

lcd.print(h); 

lcd.print("%"); 

Serial.print("Temp: "); 

Serial.print(t); 

Serial.print("C, Humidity: "); 

Serial.print(h); 

Serial.println("%"); 

delay(2000); 

} 



Internet of Things Laboratory 

Dept. of CSE, CIT, Gubbi                                                                                                                                     26 
 

Output 
 

Temperature and humidity display in Serial Monitor 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Internet of Things Laboratory 

Dept. of CSE, CIT, Gubbi                                                                                                                                     27 
 

PROGRAM 6: STUDY OF CONNECTIVITY AND CONFIGURATION OF RASPBERRY-PI/ 
BEAGLE BOARD CIRCUIT WITH BASIC PERIPHERALS, LEDS, UNDERSTANDING GPIO 
AND ITS USE IN PROGRAM. 

 
A) Raspberry-Pi:- The Rasberry Pi is a series of small single-board computers developed in the United 

Kingdom by the Raspberry Pi Foundation to promote teaching of basic computer science in 
schools and in developing countries. It does not include peripherals (such as keyboards and mice). 
The Raspberry Pi is a low cost, credit-card sized computer that plugs into a computer monitor or 
TV, and uses a standard keyboard and mouse. It is a capable little device that enables people of 
all ages to explore computing, and to learn how to program in languages like Scratch and Python. 
The Raspberry Pi is a credit-card-sized computer that costs between $5 and $35. It's available 
anywhere in the world, and can function as a proper desktop computer or be used to build smart 
devices. A Raspberry Pi is a general-purpose computer, usually with a Linux operating system, 
and the ability to run multiple programs. Raspberry Pi is like the brain. Its primary advantage 
comes in processing higher level processing capability. It’s a single board computer. 

 

  
Fig.A.1: - Raspberry-Pi Fig. A.2: -Raspberry-Pi Architecture 

 

Here are the various components on the Raspberry Pi board: 
 ARM CPU/GPU -- This is a Broadcom BCM2835 System on a Chip (SoC) that's made up of an 

ARM central processing unit (CPU) and a Video core 4 graphics processing unit (GPU). The 
CPU handles all the computations that make a computer work (taking input, doing calculations 
and producing output), and the GPU handles graphics output. 

 GPIO -- These are exposed general-purpose input/output connection points that will allow the 
real hardware hobbyists the opportunity to tinker. 

 RCA -- An RCA jack allows connection of analog TVs and other similar output devices. 
 Audio out -- This is a standard 3.55-millimeter jack for connection of audio output devices such 

as headphones or speakers. There is no audio in. 
 LEDs -- Light-emitting diodes, for your entire indicator light needs. 
 USB -- This is a common connection port for peripheral devices of all types (including your 



Internet of Things Laboratory 

Dept. of CSE, CIT, Gubbi                                                                                                                                     28 
 

mouse and keyboard). Model A has one, and Model B has two. You can use a hub to expand 
the number of ports or plug your mouse into your keyboard if it has its own port. 

 HDMI -- This connector allows you to hook up a high-definition television or other compatible 
device using an HDMI cable. 

 Power -- This is a 5v Micro power connector into which you can plug your compatible power 
supply. 

 SD card slot -- This is a full-sized SD card slot. An SD card with an operating system (OS) 
installed is required for booting the device. They are available for purchase from the 
manufacturers, but you can also download an OS and save it to the card yourself if you have 
a Linux machine and the wherewithal. 

 Ethernet -- This connector allows for wired network access and is only available on the Model 
B. 

B) Beagle board:- The Beagle Board is a low-power open-source single-board computer produced by 
Texas Instruments in association with Digi-Key and Newark element14. The Beagle Board was 
also designed with open source software development in mind, and as a way of demonstrating the 
Texas Instrument's OMAP3530 system-on-a-chip.]The board was developed by a small team of 
engineers as an educational board that could be used in colleges around the world to teach open 
source hardware and software capabilities. It is also sold to the public under the Creative 
Commons share-alike license. The board was designed using Cadence OrCAD for schematics and 
Cadence Allegro for PCB manufacturing; no simulation software was used. Beagle Bone Black is 
a low-cost, open source, community-supported development platform for ARM® Cortex™-A8 
processor developers and hobbyists. Boot Linux in under 10-seconds and get started on Sitara™ 
AM335x ARM Cortex-A8 processor development in less than 5 minutes with just a single cable. 

 

Fig.B.1: -Beagle Board Black Fig.B.1: - Beagle Board Black architecture 
 
 



Internet of Things Laboratory 

Dept. of CSE, CIT, Gubbi                                                                                                                                     29 
 

Here are the various components on the Beagle board: 
Processor: AM335x 1GHz ARM® Cortex-A8 

 512MB DDR3 RAM 
 4GB 8-bit eMMC on-board flash storage 
 3D graphics accelerator 
 NEON floating-point accelerator 
 2x PRU 32-bit microcontrollers 

 
Connectivity 

 client for power & communications 
 host 
 Ethernet 
 HDMI 
 2x 46 pin headers 

Software Compatibility 
 Debian 
 Android 
 Ubuntu 
 Cloud9 IDE on Node.js w/ BoneScript library 
 plus, much more 

 
 Arduino:- Arduino is an open-source hardware and software company, project and user community that 

designs and manufactures single-board microcontrollers and microcontroller kits for building digital 
devices and interactive objects that can sense and control objects in the physical and digital world. 
Arduino board designs use a variety of microprocessors and controllers. The boards are equipped with 
sets of digital and analog input/output (I/O) pins that may be interfaced to various expansion boards or 
breadboards (shields) and other circuits. The boards feature serial communications interfaces, including 
Universal Serial Bus () on some models, which are also used for loading programs from personal 
computers. The microcontrollers are typically programmed using a dialect of features from the 
programming languages C and C++. In addition to using traditional compiler tool chains, the Arduino 
project provides an integrated development environment (IDE) based on the Processing language 
project. Arduino is open-source hardware. The hardware reference designs are distributed under a 
Creative Commons Attribution Share-Alike 
 

 2.5 license and are available on the Arduino website. Layout and production files for some 
versions of the hardware are also available. 
 



Internet of Things Laboratory 

Dept. of CSE, CIT, Gubbi                                                                                                                                     30 
 

  
Fig.C.1: - Arduino Board Fig.C.1: - Arduino Board Architecture. 

 
 

Here are the various components on the Arduino board: 
 

Microcontrollers` 
 ATmega328P (used on most recent boards) 

 
 

 ATmega168 (used on most Arduino Diecimila and early Duemilanove) ATmega8 (used on 
some older board) 

Digital Pins 
 In addition to the specific functions listed below, the digital pins on an Arduino board can be 

used for general purpose input and output via the pinMode(), digitalRead(), and 
digitalWrite() commands. Each pin has an internal pull-up resistor which can be turned on 
and off using digitalWrite() (w/ a value of HIGH or LOW, respectively) when the pin is 
configured as an input. The maximum current per pin is 40 mA. 

 
 

Analog Pins 
 In addition to the specific functions listed below, the analog input pins support 10-bit analog-

to-digital conversion (ADC) using the analogRead() function. Most of the analog inputs can 
also be used as digital pins: analog input 0 as digital pin 14 through analog input 5 as digital 
pin 19. Analog inputs 6 and 7 (present on the Mini and BT) cannot be used as digital pins. 

Power Pins 
 VIN (sometimes labelled "9V"). The input voltage to the Arduino board when it's using an 

external power source (as opposed to 5 volts from the connection or other regulated power 



Internet of Things Laboratory 

Dept. of CSE, CIT, Gubbi                                                                                                                                     31 
 

source). You can supply voltage through this pin, or, if supplying voltage via the power jack, 
access it through this pin. Note that different boards accept different input voltages ranges, 
please see the documentation for your board. Also note that the LilyPad has no VIN pin and 
accepts only a regulated input. 

Other Pins 
 AREF. Reference voltage for the analog inputs. Used with analogReference(). 
 Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button 

to shields which block the one on the board. 
 Analog Reference pin (orange) 
 Digital Ground (light green) 
 Digital Pins 2-13 (green) 
 Digital Pins 0-1/Serial In/Out - TX/RX (dark green) - These pins cannot be used for digital 

i/o (digitalRead and digitalWrite) if you are also using serial communication (e.g. 
Serial.begin). 

 Reset Button - S1 (dark blue) 
 In-circuit Serial Programmer (blue-green) 
 Analog In Pins 0-5 (light blue) 
 Power and Ground Pins (power: orange, grounds: light orange) 
 External Power Supply In (9-12VDC) - X1 (pink) 
 Toggles External Power and Power (place jumper on two pins closest to desired supply) - 

SV1 (purple) 

 USB (used for uploading sketches to the board and for serial communication between the 
board and the computer; can be used to power the board) (yellow) 

  

 

Code: 

import RPi.GPIO as GPIO 

import time 

led1Pin = 7 

led2Pin = 11 

led3Pin = 13 

 

led4Pin = 15 

 

GPIO.setmode(GPIO.BOARD) 

GPIO.setwarnings(False) 

GPIO.setup(led1Pin, GPIO.OUT) 



Internet of Things Laboratory 

Dept. of CSE, CIT, Gubbi                                                                                                                                     32 
 

GPIO.setup(led2Pin, GPIO.OUT) 

GPIO.setup(led3Pin, GPIO.OUT) 

GPIO.setup(led4Pin, GPIO.OUT) 

 

while True: 

    print "on" 

    GPIO.output(led1Pin, True) 

    time.sleep(1) 

    GPIO.output(led2Pin, True) 

    time.sleep(1) 

    GPIO.output(led3Pin, True) 

    time.sleep(1) 

    GPIO.output(led4Pin, True) 

    time.sleep(1) 

     

    print "off" 

    GPIO.output(led1Pin, False) 

    time.sleep(1) 

    GPIO.output(led2Pin, False) 

    time.sleep(1) 

    GPIO.output(led3Pin, False) 

    time.sleep(1) 

    GPIO.output(led4Pin, False) 

    time.sleep(1) 

 

 

 

 

 

 

 

 

 



Internet of Things Laboratory 

Dept. of CSE, CIT, Gubbi                                                                                                                                     33 
 

PROGRAM 7: STUDY OF DIFFERENT OPERATING SYSTEMS FOR RASPBERRY-
PI/BEAGLE BOARD. UNDERSTANDING THE PROCESS OF OS INSTALLATION ON 
RASPBERRY-PI/BEAGLE BOARD 

 

1) Raspberry-Pi: - The Pi can run the official Raspbian OS, Ubuntu Mate, Snappy Ubuntu 
Core, the Kodi- based media centers OSMC and LibreElec, the non-Linux based Risc OS 
(one for fans of 1990s Acorn computers). It can also run Windows 10 IoT Core, which is 
very different to the desktop version of Windows, as mentioned below. 

 OS which installs on Raspberry-Pi: Raspbian, Ubuntu MATE, Snappy Ubuntu, Pidora, 
Linutop, SARPi, Arch Linux ARM, Gentoo Linux, etc. 

 

How to install Raspbian on Raspberry-Pi:  

Step 1: Download Raspbian 

Step 2: Unzip the file. The Raspbian disc image is compressed, so you’ll need to unzip it. The file uses 
the ZIP64 format, so depending on how current your built-in utilities are, you need to use certain 
programs to unzip it. 

 

Step 3: Write the disc image to your microSD card. Next, pop your microSD card into    our computer 
and write the disc image to it. The process of actually writing the image will be slightly different across 
these programs, but it’s pretty self-explanatory no matter what you’re using. Each of these programs 
will have you select the destination (make sure you’ve picked your microSD card!) and the disc image 
(the unzipped Raspbian file). Choose, double-check, and then hit the button to write. 

 

Step 4: Put the microSD card in your Pi and boot up. Once the disc image has been written to the 
microSD card, you’re ready to go! Put that sucker into your Raspberry Pi, plug in the peripherals and 
power source, and enjoy. The current edition to Raspbian will boot directly to the desktop. Your default 
credentials are username pi and password raspberry. 

 

2) BeagleBone Black: - The BeagleBone Black includes a 2GB or 4GB on-board eMMC 
flash memory chip. It comes with the Debian distribution factory pre-installed. You can 
flash new operating systems including Angstrom, Ubuntu, Android, and others. 

 

Os which install on BeagleBone Black: Angstrom, Android, Debian, Fedora, Buildroot, 
Gentoo, Nerves Erlang/OTP, Sabayon, Ubuntu, Yocto, MINIX 3 

 

 How to install Debian on BeagleBone Black:  

Step 1: Download Debian img.xz file. 

Step 2: Unzip the file. 



Internet of Things Laboratory 

Dept. of CSE, CIT, Gubbi                                                                                                                                     34 
 

Step 3: Insert your MicroSD (µSD) card into the proper slot. Most µSD cards come with a full-sized SD 
card that is really just an adapter. If this is what you have then insert the µSD into the adapter, then into 
your card reader. 

 

Step 4: Now open Win32 Disk imager, click the blue folder icon, navigate to the Debian img location, 
and double click the file. Now click Write and let the process complete. Depending on your processor 
and available RAM it should be done in around 5 minutes. 

 

Step 5: Once that's done, you'll get a notification pop-up. Now we're ready to get going. Remove the SD 
adapter from the card slot, remove the µSD card from the adapter. With the cable disconnected insert the 
µSD into the BBB. 

Step 6: Now, this next part is pretty straight forward. Plug the cable in and wait some more. If everything 
is going right you will notice that the four (4) leds just above the cable are doing the KIT impression. This 
could take up to 45 minutes, I just did it again in around 5 minutes. Your mileage will vary. Go back and 
surf reddit some more. 

 

Step 7: If you are not seeing the leds swing back and forth you will need to unplug the cable, press and 
hold down the user button above the µSD card slot (next to the 2 little 10 pin ICs) then plug in the cable. 
Release the button and wait. You should see the LEDs swinging back and forth after a few seconds. Once 
this happens it's waiting time. When all 4 LEDs next to the slot stay lit at the same time the flash process 
has been completed. 

 

Step 8: Remove the card and reboot your BBB. You can reboot the BBB by removing and reconnecting 
the cable, or hitting the reset button above the cable near the edge of the board. 

 

Step 9: Now using putty, or your SSH flavor of choice, connect to the BBB using the IP address 
192.168.7.2. You'll be prompted for a username. Type root and press Enter. By default, there is no root 
password. I recommend changing this ASAP if you plan on putting your BBB on the network. To do this 
type password, hit enter, then enter your desired password. You will be prompted to enter it again to 
verify. 

 

3) Arduino: - The Arduino itself has no real operating system. You develop code for the Arduino using 
the Arduino IDE which you can download from Arduino - Home. Versions are available for Windows, 
Mac and Linux. The Arduino is a constrained microcontroller. 

 

Arduino consists of both a physical programmable circuit board (often referred to as a microcontroller) and 
a piece of software, or IDE (Integrated Development Environment) that runs on your computer, used to 
write and upload computer code to the physical board. You are literally writing the "firmware" when you 
write the code and upload it. It's both good and its bad. 

 



Internet of Things Laboratory 

Dept. of CSE, CIT, Gubbi                                                                                                                                     35 
 

PROGRAM 8: FAMILIARIZATION WITH THE CONCEPT OF IOT, ARDUINO / RASPBERRY 
PI AND PERFORM NECESSARY SOFTWARE INSTALLATION. 
 
Internet of Things (IoT): The Internet of Things (IoT) describes the network of physical objects — 
“things”—that are embedded with sensors, software, and other technologies for the purpose of connecting 
and exchanging data with other devices and systems over the internet. These devices range from ordinary 
household objects to sophisticated industrial tools 
 
IOT is the core principle in applications of ‘smart devices. Over the past few years, IoT has become one of 
the most important technologies of the 21st century. Now that we can connect everyday objects—kitchen 
appliances, cars, thermostats, baby monitors—to the internet via embedded devices, seamless 
communication is possible between people, processes, and things. 
 
By means of low-cost computing, the cloud, big data, analytics, and mobile technologies, physical things 
can share and collect data with minimal human intervention. In this hyperconnected world, digital systems 
can record, monitor, and adjust each interaction between connected things. The physical world meets the 
digital world—and they cooperate. 
 
Industrial IoT (IIoT) refers to the application of IoT technology in industrial settings, especially with respect 
to instrumentation and control of sensors and devices that engage cloud technologies. Refer to this Titan use 
case PDF for a good example of IIoT. Recently, industries have used machine-to-machine communication 
(M2M) to achieve wireless automation and control. But with the emergence of cloud and allied technologies 
(such as analytics and machine learning), industries can achieve a new automation layer and with it create 
new revenue and business models. IIoT is sometimes called the fourth wave of the industrial revolution, or 
Industry 4.0. The following are some common uses for IIoT: 
 

 Smart manufacturing 
 Connected assets and preventive and predictive maintenance 
 Smart power grids 
 Smart cities 
 Connected logistics 
 Smart digital supply chains 

 
Arduino UNO: The Arduino Uno is an open-source microcontroller board based on 
the Microchip ATmega328P microcontroller (MCU) and developed by Arduino.cc and initially released 
in 2010. The board is equipped with sets of digital and analog input/output (I/O) pins that may be 
interfaced to various expansion boards (shields) and other circuits. The board has 14 digital I/O pins (six 
capable of PWM output), 6 analog I/O pins, and is programmable with the Arduino IDE (Integrated 
Development Environment), via a type B USB cable. It can be powered by a USB cable or a barrel 
connector that accepts voltages between 7 and 20 volts, such as a rectangular 9-volt battery. 



Internet of Things Laboratory 

Dept. of CSE, CIT, Gubbi                                                                                                                                     36 
 

 
 
 
General pin functions 

 LED: There is a built-in LED driven by digital pin 13. When the pin is high value, the LED is on, 
when the pin is low, it is off. 

 VIN: The input voltage to the Arduino/Genuino board when it is using an external power source (as 
opposed to 5 volts from the USB connection or other regulated power source). You can supply 
voltage through this pin, or, if supplying voltage via the power jack, access it through this pin. 

 5V: This pin outputs a regulated 5V from the regulator on the board. The board can be supplied with 
power either from the DC power jack (7 - 20V), the USB connector (5V), or the VIN pin of the 
board (7-20V). Supplying voltage via the 5V or 3.3V pins bypasses the regulator, and can damage 
the board. 
 

 3V3: A 3.3-volt supply generated by the on-board regulator. Maximum current draw is 50 mA. 
 GND: Ground pins. 
 IOREF: This pin on the Arduino/Genuino board provides the voltage reference with which the 

microcontroller operates. A properly configured shield can read the IOREF pin voltage and select 
the appropriate power source, or enable voltage translators on the outputs to work with the 5V or 
3.3V. 

 Reset: Typically used to add a reset button to shields that block the one on the board. 
 
Special pin functions 
 
Each of the 14 digital pins and 6 analog pins on the Uno can be used as an input or output, under software 
control (using pinMode(), digitalWrite(), and digitalRead() functions). They operate at 5 volts. Each pin can 
provide or receive 20 mA as the recommended operating condition and has an internal pull-up resistor 
(disconnected by default) of 20-50K ohm. A maximum of 40mA must not be exceeded on any I/O pin to 
avoid permanent damage to the microcontroller. The Uno has 6 analog inputs, labeled A0 through A5; each 
provides 10 bits of resolution (i.e. 1024 different values). By default, they measure from ground to 5 volts, 
though it is possible to change the upper end of the range using the AREF pin and the analog Reference () 
function. 
 
 
 

 



Internet of Things Laboratory 

Dept. of CSE, CIT, Gubbi                                                                                                                                     37 
 

In addition, some pins have specialized functions: 
 

 Serial / UART: pins 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. 
These pins are connected to the corresponding pins of the ATmega8U2 USB-to-TTL serial chip. 

 External interrupts: pins 2 and 3. These pins can be configured to trigger an interrupt on a low 
value, a rising or falling edge, or a change in value. 

 PWM (pulse-width modulation): pins 3, 5, 6, 9, 10, and 11. Can provide 8-bit PWM output with the 
analog Write () function. 

 SPI (Serial Peripheral Interface): pins 10 (SS), 11 (MOSI), 12 (MISO), and 13 (SCK). These pins 
support SPI communication using the SPI library. 

 TWI (two-wire interface) / I²C: pin SDA (A4) and pin SCL (A5). Support TWI communication 
using the Wire library. 

 AREF (analog reference): Reference voltage for the analog inputs. 
 
 
Steps to Install Arduino IDE on Windows: 
 

1. Download the latest version of Arduino IDE for Windows from Arduino.cc website 
2. Double click the downloaded exe file, latest version: arduino_ide_2.1.0.windows_64bit.exe 
3. Click on ‘I Agree’ to accept terms and conditions 
4. Select the user and click Next 
5. Click on ‘I Agree’ for License Agreement 
6. Select the destination folder for installation and click Install 
7. Once installation is complete, click Finish and Run IDE 
8. Click on ‘Allow Access’ to the Firewall Features. 
9. Once the IDE is open, for Windows, few pop ups for Drive Installs come up, install all 
 
Now IDE is ready to be used by plugging in the Arduino Uno and programs written in IDE. 


