
 Channabasaveshwara Institute of Technology
 (Affiliated to VTU, Belgaum & Recognized by A.I.C.T.E. New Delhi)

(An ISO 9001:2015 Certified Institution)

 NH 206, (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka

Department of Computer Science & Engineering

MICROCONTROLLER AND EMBEDDED SYSTEMS

LABORATORY MANUAL

SEMESTER – IV

21CS43

FACULTY IN-CHARGE

Mr. Chethan Balaji Mrs. Deepika K S

Associate Professor Assistant Professor

 Dept. of CSE

Channabasaveshwara Institute of Technology
(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi)

(ISO 9001:2015 Certified Institution)
NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka

Department of Computer Science & Engineering

LAB PROGRAMS LIST

Course outcome (Course Skill Set)

CO 1. Explain C-Compilers and optimization
CO 2. Describe the ARM microcontroller's architectural features and program module.
CO 3. Apply the knowledge gained from programming on ARM to different applications.
CO 4. Program the basic hardware components and their application selection method.
CO 5. Demonstrate the need for a real-time operating system for embedded system applications.

HOD

1. Using Keil software, observe the various registers, dump, CPSR, with a simple ALP programme.

2. Write a program to find the sum of the first 10 integer numbers.

3. Write a program to find the factorial of a number

4. Write a program to add an array of 16 bit numbers and store the 32 bit result in internal RAM.

5. Write a program to find the square of a number (1 to 10) using a look-up table.

6. Write a program to find the largest or smallest number in an array of 32 numbers.

7. Write a program to arrange a series of 32 bit numbers in ascending/descending order.

8. Write a program to count the number of ones and zeros in two consecutive memory locations.

9. Display “Hello World” message using Internal UART.

10. Interface and Control a DC Motor.

11. Interface a Stepper motor and rotate it in clockwise and anti-clockwise direction.

12. Determine Digital output for a given Analog input using Internal ADC of ARM controller.

13. Interface a DAC and generate Triangular and Square waveforms.

14. Interface a 4x4 keyboard and display the key code on an LCD.

15. Demonstrate the use of an external interrupt to toggle an LED On/Off.

16. Display the Hex digits 0 to F on a 7-segment LED interface, with an appropriate delay in between.

17. Demonstration of IoT applications by using Arduino and Raspberry Pi.

21CS43, MC&ES-LAB IV Sem. CSE

Page 1 of 38

PROGRAM NO.1

AIM: USING KEIL SOFTWARE, OBSERVE THE VARIOUS REGISTERS, DUMP, CPSR,

WITH A SIMPLE ALP PROGRAMME

1. SAMPLE PROGRAM FOR ARITHMETIC INSTRUCTIONS

AREA PROG1, CODE, READONLY

 ENTRY

START

 LDR R1, =0X00000006

 LDR R2, =0X00000002

 ADD R4, R1, R2

 ADC R5, R1, R2

 SUB R6, R1, R2

 SBC R8, R1, R2

 RSB R7, R1, R2

 RSC R3, R1, R2

STOP B STOP

TRACING

R1=0X00000006

R2=0X00000002

R4=R1+R2=0X00000008 (6+2=8)

R5=R1+R2+C=0X00000008(6+2+0)=8

R6=R1-R2=0X00000004(6-2=4)

R8=R1-R2-!C=0X00000003(6-2-!0=3)

R7=R2-R1=0XFFFFFFFC (2-6= -4 = 0XFFFFFFFC in hexadecimal)

RESULT: R4=0X00000008, R5=0X00000008 , R6=0X00000004 , R8=0X00000003,

R7=0XFFFFFFFC

2. SAMPLE PROGRAM FOR LOGICAL INSTRUCTIONS

AREA LOGIC,CODE,READONLY

ENTRY

 MOV R1, #0X00000006

 MOV R2, #0X00000004

 ORR R3,R2,R1

 AND R5,R1,R2

21CS43, MC&ES-LAB IV Sem. CSE

Page 2 of 38

EOR R6,R1,R2

 BIC R4,R1,R2

STOP B STOP

END

TRACING

 R1=0X00000006

 R2=0X00000004

 R3=R2|R1=0X00000006

 R5=R1&R2=0X00000004

 R6=R1^R2=0X00000002

 R4=R1&(!R2)=0X00000002

RESULT: R3=0X00000006, R5=0X00000004, R6=0X00000002, R4=0X00000002

3.SAMPLE PROGRAM ON BRANCH INSTRUCTIONS

AREA Branch, CODE, READONLY

 ENTRY

START

 LDR R0, =0XFFFFFFFF

ADDS R0, #1 /CMN R0,#1

STOP B STOP

TRACING: R0 = 0XFFFFFFFF

R0=R0+1=0X00000000 BUT IT WILL UPDATE FLAGS IN THE CPSR(N=1,Z=1,C=1,V=0)

RESULT: R0=0X00000000 BUT CPSR (N=1, Z=1, C=1, V=0)

21CS43, MC&ES-LAB IV Sem. CSE

Page 3 of 38

4.WRITE AN ALP PROGRAM TO EVALUATE THE ARITHMETIC EXPRESSION

X= (A + C) - D

AREA EX, CODE, READONLY

 ENTRY

START LDR R4,=A ; get address for A

 LDR R0,[R4] ; get value of A

 LDR R4, =C ; get address for C , reusing R4

 LDR R1, [R4] ; get value of C

 ADD R3,R0,R1 ; compute A+C

 LDR R4, =D ; get address for D

 LDR R2,[R4] ; get value of D

 SUB R3,R3,R2 ; complete computation of X

 LDR R4, =X ; get address for X

 STR R3, [R4] ; store value of X

STOP B STOP

A DCD 0X45

C DCD 0X25

D DCD 0X05

 AREA DATA1 ,DATA, READWRITE

X DCD 0

END

TRACING

R4=0X0000002C

R0=0X00000045

R4=0X0000002C

R1=0X00000025

R3=(0X45+0X25) = 0X0000006A

R4=0X00000034

R2=0X00000005

R3=R3-R2=0X00000065

R4=0X40000000

RESULT: R3=0X00000065 AND WITH MEMORY ADDRESS 0X40000000=0X00000065

21CS43, MC&ES-LAB IV Sem. CSE

Page 4 of 38

PROGRAM NO.2

AIM: TO WRITE A PROGRAM TO FIND THE SUM OF THE FIRST 10 INTEGER

NUMBERS.

1+2+3+4+5+6+7+8+9+10=55=0X37

PROGRAM

 AREA SUM, CODE, READONLY

 ENTRY

START

 MOV R0,#10 ;set the counter=10

 MOV R1,#0 ; initialize the register to store result

 MOV R2,#1 ;take 1st number to add

NEXT

 ADD R1,R1,R2 ; add the numbers

 ADD R2,#1 ; increment the integer

 SUBS R0,#1 ; decrement counter

 BNE NEXT ;branch to the loop if not equal to zero

STOP B STOP

 END

TRACING:

R0=10=0XA

R1=0

R2=1

R1=R1+R2=0+1=1 R1=1+2=3 R1=3+3=6 R1=6+4=10=0XA

R2=R2+1=1+1=2 R2=2+1=3 R2=3+1=4 R2=4=1=5

R0=R0-1=10-1=9 R0=9-1=8 R0=8-1=7 R0=7-1=6

R1=10+5=15=0XF R1=15+6=21=0X16 R1=21+7=28=0X1C R1=28+8=36=0X24

R2=5+1=6 R2=6+1=7 R2=7+1=8 R2=8+1=9

R0=6-1=5 R0=5-1=4 R0=4-1=3 R0=3-1=2

21CS43, MC&ES-LAB IV Sem. CSE

Page 5 of 38

R1=36+9=45=0X2D R1=45+10=55=0X37

R2=9+1=10 R2=10+1=11

R0=2-1=1 R0=1-1=0

RESULT: R1=55=0X37

21CS43, MC&ES-LAB IV Sem. CSE

Page 6 of 38

PROGRAM NO.3

AIM: WRITE A PROGRAM TO FIND THE FACTORIAL OF A NUMBER.

Ex: 5! = 5*4*3*2*1=120=0x78

 AREA FACT, CODE, READONLY

ENTRY

 MOV R1,#5 ; take the factorial number

 MOV R2,#1 ; initialize register to store result

BACK

CMP R1,#0 ; compare R1=0 if r1=0 stop and return result (R2 holds result)

BEQ STOP ; else

MUL R2,R1,R2 ; multiply R1 with R2,

SUB R1,#1 ; decrement R1 by 1 branch to step 3

 B BACK ; repeat until R1=0

STOP B STOP

 END

TRACING:

R1=5

R2=1

CHECK R1=0 ,NO R1=5 CHECK R1=0 NO R1=4 CHECK R1=0 NO R1= 3

R2=R1*R2=5*1=5 R2=R1*R2=4*5=20 R2=R1*R2=3*20=60

R1=4 R1=3 R1=2

CHECK R1=0 NO R1= 2 CHECK R1=0 NO R1= 1 CHECK R1=0 YES R1=0

R2=R1*R2=2*60=120 R2=R1*R2=1*120=120 STOP EXECUTION

R1=1 R1=0

RESULT: R2=120=0X78

21CS43, MC&ES-LAB IV Sem. CSE

Page 7 of 38

PROGRAM NO.4

AIM:TO WRITE A PROGRAM TO ADD AN ARRAY OF 16 BIT NUMBERS AND STORE

THE 32-

BIT RESULT IN INTERNAL RAM.

AREA ARRAY1, CODE, READONLY

ENTRY

 LDR R0, MEMORY ;load starting address of the array
 MOV R1, #4 ; load array size

 LDRH R2, [R0] ;load 1st number

 ADD R1, #-1 ; decrement counter
UP

 ADD R0, R0, #2 ; increment pointer by 2

 LDRH R3, [R0] ;load second number
 ADD R2, R3, R2 ;R2=R3+R2

NEXT

 ADD R1, #-1 ;decrement counter

 CMP R1, #0 ;is counter=0?
 BNE UP if counter!=0? then repeat

 LDR R0, RESULT

 STR R2, [R0] ;store the result
STOP B STOP

MEMORY DCD 0X40000000 ;starting address of the array

RESULT DCD 0X40000010 ;starting address of the result
END

TRACING:

R0=0X40000000

R1=4

R2=[0X40000000]=0X00000011

R1=3

21CS43, MC&ES-LAB IV Sem. CSE

Page 8 of 38

R0=0X40000002 R0=0X40000004

R3=[0X40000002]= 0X00000022 R3=[0X40000002]= 0X00000033

R2=0X00000033 R2=0X00000066

R1=2 R1=1

R0=0X40000006 R0=0X40000010

R3=[0X40000002]= 0X00000044 R2=[0X40000010]= 0X000000AA

R2=0X000000AA

R1=0

RESULT: R2=[0X40000010]= 0X000000AA

21CS43, MC&ES-LAB IV Sem. CSE

Page 9 of 38

PROGRAM NO.5

AIM: TO WRITE A PROGRAM TO FIND THE SQUARE OF A NUMBER (1 TO 10) USING A LOOK-

UP TABLE.

AREA SUARES,CODE,READONLY

ENTRY

 MOV R1,#3 ;take the number to find square

 LDR R0,=LOOKUP ; data in lookup table address moved to R0

 MOV R1,R1,LSL#02 ; the content in R1 left shift by 2

 ADD R0,R0,R1 ; add R0 and R1

 LDR R3,[R0] ;data in address of R0 loaded to R3

STOP B STOP

LOOKUP DCD 0X0,0X1,0X4,0X9,0X16,0X25,0X36,0X49,0X64,0X81,0X100

END

TRACING:

 R1=3

 R0=0x00000018

 R0=0x0000000C

 R0=R0+R1=[0x00000024] pointing to address

 R3=[0x00000024] = 0x00000009

RESULT: R3=[0x00000024] = 0x00000009

21CS43, MC&ES-LAB IV Sem. CSE

Page 10 of 38

PROGRAM NO.6

AIM: TO WRITE A PROGRAM TO FIND THE LARGEST OR SMALLEST NUMBER IN AN

ARRAY OF 32 NUMBERS.

AREA LARGEST,CODE,READONLY

 ENTRY

 MOV R5,#5

 LDR R0,A

 LDR R2,[R0]

NEXT ADD R0,#4

 LDR R3,[R0]

 CMP R2,R3

 BHS LARGE

 MOV R2,R3

LARGE SUBS R5,#1

 BNE NEXT

 LDR R1,RES

 STR R2,[R1]

STOP B STOP

A DCD 0X40000000

RES DCD 0X40000020

END

21CS43, MC&ES-LAB IV Sem. CSE

Page 11 of 38

TRACING:

R5=5

R0=0X40000000

R2=[0X40000000]=25

RO=0X40000004 RO=0X40000008

NEXT R3=[0X40000004]=33 R3=[0X40000008]=85

COMPARE 25 AND 33 IS 25>33 NO THEN IS 33>85 NO THEN

R2=R3=33 R2=R3=85

R5=4 (R5 !=1) THEN BRANCH TO NEXT R5=3 (R5 !=1) THEN BRANCH TO NEXT

RO=0X4000000C RO=0X40000010

R3=[0X4000000C]=99 R3=[0X40000010]=59

IS 85>99 NO THEN IS 99>59 TES THEN

R2=R3=99

R5=2 (R5 !=1) THEN BRANCH TO NEXT R5=1 (R5 !=0) THEN BRANCH TO NEXT

RO=0X40000014

R3=[0X40000014]=44

IS 44>99 NO THEN

R5=0 (R5 !=0) THEN

R1=0X40000020

R2=[0X40000020]=99

RESULT: R2=[0X40000020]=99

21CS43, MC&ES-LAB IV Sem. CSE

Page 12 of 38

PROGRAM NO.7

AIM: TO WRITE A PROGRAM TO ARRANGE A SERIES OF 32-BIT NUMBERS IN

ASCENDING/DESCENDING ORDER.

AREA ASCENDING, CODE, READONLY

 ENTRY

 MOV R0,#0X00000003

NXTPASS MOV R1,#03

 MOV R2,#0X40000000

NXTCMP

 LDR R3,[R2]

 ADD R2,R2,#04

 LDR R4,[R2]

 CMP R3,R4

 BLT NOEXCG

 STR R3,[R2]

 SUB R2,R2,#04

 STR R4,[R2]

 ADD R2,R2,#04

NOEXCG

 SUB R1,R1,#01

 CMP R1,#00

 BNE NXTCMP

 SUB R0,R0,#01

 CMP R0,#00

 BNE NXTPASS

STOP B STOP

 END

21CS43, MC&ES-LAB IV Sem. CSE

Page 13 of 38

TRACING:

22

0X40000000

11

0X40000004

44

0X40000008

33

0X4000000C

R0=3

R1=3

R2=0X40000000

R3=22 R3=22

R2=0X40000004 R2=0X40000008

R4=11 R4=44

COMPARE R3 AND R4 IS R3<R4 THEN COMPARE R3 AND R4 IS R3<R4 YES THEN

R3=11

R2=0X40000000

R4=22

11

0X40000000

22

0X40000004

44

0X40000008

33

0X4000000C

R2= 0X40000004

R1=2 R1=1

CMP R1!=0 ITS 2

R3=44

R2=0X4000000C

R4=33

COMPARE R3 AND R4 IS R3<R4 THEN

11

0X40000000

22

0X40000004

33

0X40000008

44

0X4000000C

R3=33

R2=0X40000008

21CS43, MC&ES-LAB IV Sem. CSE

Page 14 of 38

R4=44

R2=0X4000000C

R1=0 THEN

R0=2

COMPARE R0=0 NO LOOP REPEATS

RESULT:

11

0X40000000

22

0X40000004

33

0X40000008

44

0X4000000C

21CS43, MC&ES-LAB IV Sem. CSE

Page 15 of 38

PROGRAM NO.8

AIM: TO WRITE A PROGRAM TO COUNT THE NUMBER OF ONES AND ZEROS IN

TWO CONSECUTIVE MEMORY LOCATIONS.

AREA ONESS,CODE,READONLY

 ENTRY

 MOV R1,#0 ;counter for ones

 MOV R2,#0 ;counter for zeros

 MOV R3,#2 ;counter to set two words

 LDR R4,=VALUE ;loads the address of value

LOOP2

 MOV R5,#32

 LDR R6,[R4],#4

LOOP0

 MOVS R6,R6,ROR #1

 BHI ONES

 ADD R2,R2,#1

 B LOOP1

ONES

 ADD R1,R1,#1

LOOP1

 SUBS R5,R5,#1

 BNE LOOP0

21CS43, MC&ES-LAB IV Sem. CSE

Page 16 of 38

 SUBS R3,R3,#1

 BNE LOOP2

STOP B STOP

VALUE DCD 0X3,0X2

END

TRACING:

R1=0

R2=0

R3=2

R4=0X00000040

R5=32 OR 0X00000020

R6=0X00000003, R4=0X00000044

R6=80000001 R6=0XC000000

IS C=1? YES BRANCH TO ONES IS C=1? YES BRANCH TO ONES

R1=0X00000001 R1=0X00000002

R5=0X0000001F OR 31 R5=0X0000001E OR 30

CHECKS R5=0 NO ITS 31 BRANCH TO LOOP0 CHECKS R5=0 NO ITS 31 BRANCH TO LOOP0

R6=0X60000000

IS C=1? NO ITS ZERO THEN

R2=0X00000001 BRANCH TO LOOP1 THEN

R5=0X0000001D OR 29

CHECKS R5=0 NO ITS 29 BRANCH TO LOOP0

THE LOOP WILL REPEAT UNTILL R5=0

RESULT:

No. of ones =3 = R1=0x00000003

No of zeros = 61 = R2=0x0000003D

21CS43, MC&ES-LAB IV Sem. CSE

Page 17 of 38

PROGRAM NO.9

AIM: TO DISPLAY “HELLO WORLD” MESSAGE USING INTERNAL UART

PROGRAM:

#include <LPC21xx.H> /* LPC21xx definitions */
Voidart0_init (void);
void uart0_putc(char);
void uart0_puts(char *); // declarations

void delay_ms(int count) // delay subroutine

21CS43, MC&ES-LAB IV Sem. CSE

Page 18 of 38

21CS43, MC&ES-LAB IV Sem. CSE

Page 19 of 38

PROGRAM NO.10

AIM: TO INTERFACE AND CONTROL A DC MOTOR.

In most of the applications controlling the speed of DC motor is essential where the precision

and protection are the essence. Here we will use the PWM technique to control the speed of the

motor. LPC 2148 has one PWM channel with six ports. PWM changes the average output

voltage by fast switching. By changing the on time, the output voltage can be 0 to 100%. There

are two software parameters that need a little explanation: cycle and offset. Cycle is the length

of a PWM duty cycle and offset is the one time of a duty cycle.

21CS43, MC&ES-LAB IV Sem. CSE

Page 20 of 38

PROGRAM NO.11

AIM: INTERFACE A STEPPER MOTOR AND ROTATE IT IN CLOCKWISE AND ANTI-

CLOCKWISE DIRECTION.

Stepper motors consist of a permanent magnetic rotating shaft, called the rotor, and

electromagnets on the stationary portion that surrounds the motor, called the stator.

Figure 1 illustrates one complete rotation of a stepper motor. At position 1, we can see

that the rotor is beginning at the upper electromagnet, which is currently active (has

voltage applied to it). To move the rotor clockwise (CW), the upper electromagnet is

deactivated and the right electromagnet is activated, causing the rotor to move 90 degrees

CW, aligning itself with the active magnet. This process is repeated in the same manner

at the south and west electromagnets until we once again reach the starting position.

21CS43, MC&ES-LAB IV Sem. CSE

Page 21 of 38

21CS43, MC&ES-LAB IV Sem. CSE

Page 22 of 38

PROGRAM NO.12

AIM: TO DETERMINE DIGITAL OUTPUT FOR A GIVEN ANALOG INPUT USING

INTERNAL ADC OF ARM CONTROLLER.

Analog to Digital Converter (ADC) is used to convert analog signal into digital form.

LPC2148 has two inbuilt 10-bit ADC i.e. ADC0 & ADC1.ADC0 has 6 channels &ADC1 has

8 channels. Hence, we can connect 6 distinct types of input analog signals to ADC0 and 8

distinct types of input analog signals to ADC1.

ADCs in LPC2148 use Successive Approximation technique to convert analog signal into

digital form. This Successive Approximation process requires a clock less than or equal to 4.5

MHz. We can adjust this clock using clock divider settings. Both ADCs in LCP2148 convert

analog signals in the range of 0V to VREF (typically 3V; not to exceed VDDA voltage level).

21CS43, MC&ES-LAB IV Sem. CSE

Page 23 of 38

21CS43, MC&ES-LAB IV Sem. CSE

Page 24 of 38

21CS43, MC&ES-LAB IV Sem. CSE

Page 25 of 38

21CS43, MC&ES-LAB IV Sem. CSE

Page 26 of 38

PROGRAM NO.13

AIM: INTERFACE A DAC AND GENERATE TRIANGULAR AND SQUARE WAVEFORMS.

Digital to Analog Converter (DAC) are mostly used to generate analog signals (e.g.

 sine wave, triangular wave etc.) from digital values.

 LPC2148 has 10-bit DAC with resistor string architecture. It also works in Power

down mode.

 LPC2148 has Analog output pin (AOUT) on chip, where we can get digital value in

the form of Analog output voltage.

 The Analog voltage on AOUT pin is calculated as ((VALUE/1024) * VREF). Hence,

we can change voltage by changing VALUE(10-bit digital value) field in DACR (DAC

Register).

e.g. if we set VALUE =512, then, we can get analog voltage on AOUT pin as ((512/1024) *

VREF) = VREF/2.

21CS43, MC&ES-LAB IV Sem. CSE

Page 27 of 38

21CS43, MC&ES-LAB IV Sem. CSE

Page 28 of 38

PROGRAM NO.14

AIM: TO INTERFACE A 4X4 KEYBOARD AND DISPLAY THE KEY CODE ON AN LCD.

21CS43, MC&ES-LAB IV Sem. CSE

Page 29 of 38

21CS43, MC&ES-LAB IV Sem. CSE

Page 30 of 38

21CS43, MC&ES-LAB IV Sem. CSE

Page 31 of 38

PROGRAM NO.15

AIM: TO DEMONSTRATE THE USE OF AN EXTERNAL INTERRUPT TO TOGGLE AN

LED ON/OFF.

PROGRAM:

21CS43, MC&ES-LAB IV Sem. CSE

Page 32 of 38

PROGRAM NO.16

AIM: TO DISPLAY THE HEX DIGITS 0 TO F ON A 7-SEGMENT LED INTERFACE, WITH

AN APPROPRIATE DELAY IN BETWEEN.

21CS43, MC&ES-LAB IV Sem. CSE

Page 33 of 38

21CS43, MC&ES-LAB IV Sem. CSE

Page 34 of 38

PROGRAM NO.17

AIM: TO DEMONSTRATION THE IOT APPLICATIONS BY USING ARDUINO AND

RASPBERRY PI.

Internet of Things (IoT) is a network of physical objects or people called “things” that are embedded

with software, electronics, network, and sensors that allows these objects to collect and exchange
data. The goal of IoT is to extend to internet connectivity from standard devices like computer,

mobile, tablet to relatively dumb devices like a toaster.

IoT makes virtually everything “smart,” by improving aspects of our life with the power of data

collection, AI algorithm, and networks. The thing in IoT can also be a person with a diabetes monitor
implant, an animal with tracking devices, etc. This IoT tutorial for beginners covers all the Basics of

IoT.

How IoT works?

The entire IoT process starts with the devices themselves like smartphones, smartwatches, electronic

appliances like TV, Washing Machine which helps you to communicate with the IoT platform.

Now in this IoT tutorial, we will learn about four fundamental components of an IoT system:

1) Sensors/Devices: Sensors or devices are a key component that helps you to collect live data from

the surrounding environment. All this data may have various levels of complexities. It could be a

simple temperature monitoring sensor, or it may be in the form of the video feed.

A device may have various types of sensors which performs multiple tasks apart from sensing.
Example, A mobile phone is a device which has multiple sensors like GPS, camera but your

smartphone is not able to sense these things.

) Connectivity: All the collected data is sent to a cloud infrastructure. The sensors should be

connected to the cloud using various mediums of communications. These communication mediums

include mobile or satellite networks, Bluetooth, WI-FI, WAN, etc.

3) Data Processing: Once that data is collected, and it gets to the cloud, the software performs
processing on the gathered data. This process can be just checking the temperature, reading on devices

21CS43, MC&ES-LAB IV Sem. CSE

Page 35 of 38

like AC or heaters. However, it can sometimes also be very complex like identifying objects, using

computer vision on video.

4)User Interface: The information needs to be available to the end-user in some way which can be

achieved by triggering alarms on their phones or sending them notification through email or text

message. The user sometimes might need an interface which actively checks their IoT system. For

example, the user has a camera installed in his home. He wants to access video recording and all the

feeds with the help of a web server.

However, it’s not always one-way communication. Depending on the IoT application and complexity

of the system, the user may also be able to perform an action which may create cascading effects.

For example, if a user detects any changes in the temperature of the refrigerator, with the help of IoT

technology the user should able to adjust the temperature with the help of their mobile phone.

IoT Applications

Application type Description

Smart Thermostats Helps you to save resource on heating bills by knowing your usage patterns.

Connected Cars
IoT helps automobile companies handle billing, parking, insurance, and other

related stuff automatically.

Activity Trackers
Helps you to capture heart rate pattern, calorie expenditure, activity levels,
and skin temperature on your wrist.

Smart Outlets
Remotely turn any device on or off. It also allows you to track a device’s

energy level and get custom notifications directly into your smartphone.

21CS43, MC&ES-LAB IV Sem. CSE

Page 36 of 38

Parking Sensors
IoT technology helps users to identify the real-time availability of parking

spaces on their phone.

Connect Health
The concept of a connected health care system facilitates real-time health
monitoring and patient care. It helps in improved medical decision-making

based on patient data.

Smart City
Smart city offers all types of use cases which include traffic management to

water distribution, waste management, etc.

Smart home
Smart home encapsulates the connectivity inside your homes. It includes

smoke detectors, home appliances, light bulbs, windows, door locks, etc.

Smart supply chain
Helps you in real time tracking of goods while they are on the road, or getting

suppliers to exchange inventory information.

21CS43, MC&ES-LAB IV Sem. CSE

Page 37 of 38

VIVA QUESTIONS:

1. What is the processor used by ARM7?

a) 8-bit CISC b) 8-bit RISC

c) 32-bit CISC

 d) 32-bit RISC

2. What is the instruction set used by ARM7?

a) 16-bit instruction set

b) 32-bit instruction set

c) 64-bit instruction set

d) 8-bit instruction set

3. How many registers are there in ARM7?

a) 35 register(28 GPR and 7 SPR)

b) 37 registers(28 GPR and 9 SPR)

c) 37 registers(31 GPR and 6 SPR)

d) 35 register(30 GPR and 5 SPR)

Explanation: ARM7TDMI has 37 registers(31 GPR and 6 SPR). All these designs use a Von Neumann

architecture, thus the few versions comprising a cache do not separate data and instruction caches.

4. ARM7 has an in-built debugging device?

a) True

b) False

5. What is the capability of ARM7 f instruction for a second?

 a) 110 MIPS

 b) 150 MIPS

c) 125 MIPS

d) 130 MIPS

6. We have no use of having silicon customization?

a) True

b) False

7. Which of the following has the same instruction set as ARM7?

a) ARM6

b) ARMv3

21CS43, MC&ES-LAB IV Sem. CSE

Page 38 of 38

c) ARM71a0

d) ARMv4T

8. What are t, d, m, I stands for in ARM7TDMI?

a) Timer, Debug, Multiplex, ICE

b) Thumb, Debug, Multiplier, ICE

 c) Timer, Debug, Modulation, IS

d) Thumb, Debug, Multiplier, ICE

9. ARM stands for _________

a) Advanced RISC Machine

b) Advanced RISC Methadology

c) Advanced Reduced Machine

d) Advanced Reduced Methadology

10. What are the profiles for ARM architecture?

 a) A,R b) A,M c) A,R,M d) R,M

11. ARM7DI operates in which mode?

 a) Big Endian

 b) Little Endian

c) Both big and little Endian

d) Neither big nor little Endian

12. In which of the following ARM processors virtual memory is present?

 a) ARM7DI b) ARM7TDMI-S c) ARM7TDMI d) ARM7EJ-S

13. How many instructions pipelining is used in ARM7EJ-S?

 a) 3-Stage b) 4-Stage c) 5-Stage d)2-stage

14. How many bit data bus is used in ARM7EJ-s?

 a) 32-bit b) 16-bit c) 8- d) Both 16 and 32 bit

15. What is the cache memory for ARM710T?

a) 12Kb b) 16Kb c) 32Kb d) 8Kb

	Digital to Analog Converter (DAC) are mostly used to generate analog signals (e.g.
	How IoT works?
	IoT Applications

