

Channabasaveshwara Institute of Technology
(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi)

(NAAC Accredited & ISO 9001:2015 Certified Institution)

NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka.

Department of Information Science & Engineering

LAB MANUAL
(2022–23)

18CSL57

COMPUTER NETWORK LABORATORY

V Semester ISE

‘Instructions to the Candidates’

1. Students should come with thorough preparation for the experiment to be
conducted.

2. Students will not be permitted to attend the laboratory unless they bring the

practical record fully completed in all respects pertaining to the experiment

conducted in the previous class.

3. Practical record should be neatly maintained.

4. They should obtain the signature of the staff-in-charge in the observation book

after completing each experiment.

5. Theory regarding each experiment should be written in the practical record before
procedure in your own words.

6. Ask lab technician for assistance if you have any problem.

7. Save your class work, assignments in system.

8. Do not download or install software without the assistance of the laboratory

technician.

9. Do not alter the configuration of the system.

10. Turnoff the systems after use.

Channabasaveshwara Institute of Technology
(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi)

(NAAC Accredited & ISO 9001:2015 Certified Institution)

NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka.

Department of Information Science & Engineering

TABLE OF CONTENTS

BASICS OF NS2

1. Introduction to NS2 1

2. XGraph 9

3. Awk and advanced 10

Part-A

4. Three node point to point network 12

5. Transmission of Ping messages 14

6. Ethernet Lan using n-nodes with multiple traffic 18

7. Simple ESS with wireless Lan 22

8. Performance of GSM using MAC layer 26

9. Performance of CDMA 30

Part-B

1. CRC-CCITT 34

2. Bellman-Ford Algorithm 39

3. Client server using TCP/IP sockets 42

4. Client-Server Communication 45

5. RSA Algorithm to Encrypt and Decrypt the Data 48

6. Congestion Control Using Leaky Bucket Algorithm 53

Viva-voice 57

References 60

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 1

Introduction to NS-2:

PART-A

 Widely known as NS2, is simply an event driven simulation tool.

 Useful in studying the dynamic nature of communication networks.

 Simulation of wired as well as wireless network functions and protocols (e.g., routing

algorithms, TCP, UDP) can be done using NS2.

 In general, NS2 provides users with a way of specifying such network protocols and

simulating their corresponding behaviors.

Basic Architecture of NS2

Tcl scripting

• Tcl is a general purpose scripting language. [Interpreter]

• Tcl runs on most of the platforms such as Unix, Windows, and Mac.

• The strength of Tcl is its simplicity.

• It is not necessary to declare a data type for variable prior to the usage.

Basics of TCL

Syntax: command arg1 arg2 arg3

 Hello World!

puts stdout{Hello, World!}

Hello, World!

 Variables Command Substitution

set a 5 set len [string length foobar]

set b $a set len [expr [string length foobar] + 9]

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 2

set ns [new]

 Simple Arithmetic

expr 7.2 / 4

 Procedures

proc Diag {a b} {

set c [expr sqrt($a * $a + $b * $b)]

return $c }

puts “Diagonal of a 3, 4 right triangle is [Diag 3 4]”

Output: Diagonal of a 3, 4 right triangle is 5.0

 Loops

while{$i < $n} { for {set i 0} {$i < $n} {incr i} {

.

} }

Wired TCL Script Components

Create the event scheduler

Open new files & turn on the tracing

Create the nodes

Setup the links

Configure the traffic type (e.g., TCP, UDP, etc)

Set the time of traffic generation (e.g., CBR, FTP)

Terminate the simulation

NS Simulator Preliminaries.

1. Initialization and termination aspects of the ns simulator.

2. Definition of network nodes, links, queues and topology.

3. Definition of agents and of applications.

4. The nam visualization tool.

5. Tracing and random variables.

Initialization and Termination of TCL Script in NS-2

An ns simulation starts with the command

Which is thus the first line in the tcl script? This line declares a new variable as using the set

command, you can call this variable as you wish, In general people declares it as ns because

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 3

set tracefile1 [open out.tr w]

$ns trace-all $tracefile1

set namfile [open out.nam w]

$ns namtrace-all $namfile

it is an instance of the Simulator class, so an object the code[new Simulator] is indeed the

installation of the class Simulator using the reserved word new.

In order to have output files with data on the simulation (trace files) or files used for

visualization (nam files), we need to create the files using “open” command:

#Open the Trace file

#Open the NAM trace file

The above creates a trace file called “out.tr” and a nam visualization trace file called

“out.nam”. Within the tcl script, these files are not called explicitly by their names, but

instead by pointers that are declared above and called “tracefile1” and “namfile” respectively.

Remark that they begins with a # symbol. The second line open the file “out.tr” to be used for

writing, declared with the letter “w”. The third line uses a simulator method called trace-all

that have as parameter the name of the file where the traces will go.

The last line tells the simulator to record all simulation traces in NAM input format. It

also gives the file name that the trace will be written to later by the command $ns flush-trace.

In our case, this will be the file pointed at by the pointer “$namfile”, i.e the file “out.tr”.

The termination of the program is done using a “finish” procedure.

#Define a ‘finish’ procedure

Proc finish { } {

global ns tracefile1
namfile

$ns flush-trace

Close $tracefile1

Close $namfile

Exec nam out.nam &

Exit 0

}

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 4

$ns duplex-link $n0 $n2 10Mb 10ms
DropTail

$ns at 125.0 “finish”

$ns run

set n0 [$ns

The word proc declares a procedure in this case called finish and without arguments.

The word global is used to tell that we are using variables declared outside the procedure.

The simulator method “flush-trace” will dump the traces on the respective files. The tcl

command “close” closes the trace files defined before and exec executes the nam program for

visualization. The command exit will ends the application and return the number 0 as status

to the system. Zero is the default for a clean exit. Other values can be used to say that is a exit

because something fails.

At the end of ns program we should call the procedure “finish” and specify at what

time the termination should occur. For example,

will be used to call “finish” at time 125sec.Indeed,the at method of the simulator allows us to

schedule events explicitly.

The simulation can then begin using the command

Definition of a network of links and nodes

The way to define a node is

The node is created which is printed by the variable n0. When we shall refer to that node in

the script we shall thus write $n0.

Once we define several nodes, we can define the links that connect them. An example

of a definition of a link is:

Which means that $n0 and $n2 are connected using a bi-directional link that has 10ms

of propagation delay and a capacity of 10Mb per sec for each direction.

To define a directional link instead of a bi-directional one, we should replace “duplex-

link” by “simplex-link”.

In NS, an output queue of a node is implemented as a part of each link whose input is

that node. The definition of the link then includes the way to handle overflow at that queue.

In our case, if the buffer capacity of the output queue is exceeded then the last packet to

arrive is dropped. Many alternative options exist, such as the RED (Random Early Discard)

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 5

set sink [new Agent /TCPSink]

set tcp [new
Agent/TCP]

set udp [new Agent/UDP]

$ns attach-agent $n1

$udp set null [new

Agent/Null]

$ns attach-agent $n5 $null

$ns connect $udp $null

$udp set fid_2

mechanism, the FQ (Fair Queuing), the DRR (Deficit Round Robin), the stochastic Fair

Queuing (SFQ) and the CBQ (which including a priority and a round-robin scheduler).

In ns, an output queue of a node is implemented as a part of each link whose input is

that node. We should also define the buffer capacity of the queue related to each link. An

example would be:

Agents and Applications

We need to define routing (sources, destinations) the agents (protocols) the

application that use them.

FTP over TCP

TCP is a dynamic reliable congestion control protocol. It uses Acknowledgements

created by the destination to know whether packets are well received.

There are number variants of the TCP protocol, such as Tahoe, Reno, NewReno,

Vegas. The type of agent appears in the first line:

The command $ns attach-agent $n0 $tcp defines the source node of the tcp connection.

The command

Defines the behavior of the destination node of TCP and assigns to it a pointer called sink.

#Setup a UDP connection

#set Queue Size of link (n0-n2) to 20

$ns queue-limit $n0 $n2 20

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 6

set cbr [new
Application/Traffic/CBR]

$cbr attach-agent $udp

$cbr set packetsize_ 100

$cbr set rate_ 0.01Mb

$cbr set random_ false

$cbr set interval_
0.005

$cbr set packetSize_ <packet size>

#setup a CBR over UDP connection

Above shows the definition of a CBR application using a UDP agent

The command $ns attach-agent $n4 $sink defines the destination node. The

command $ns connect $tcp $sink finally makes the TCP connection between the source and

destination nodes.

TCP has many parameters with initial fixed defaults values that can be changed if

mentioned explicitly. For example, the default TCP packet size has a size of 1000bytes.This

can be changed to another value, say 552bytes, using the command $tcp set packetSize_

552.

When we have several flows, we may wish to distinguish them so that we can identify

them with different colors in the visualization part. This is done by the command $tcp set

fid_ 1 that assigns to the TCP connection a flow identification of “1”.We shall later give the

flow identification of “2” to the UDP connection.

CBR over UDP

A UDP source and destination is defined in a similar way as in the case of TCP.

Instead of defining the rate in the command $cbr set rate_ 0.01Mb, one can define the

time interval between transmission of packets using the command.

The packet size can be set to some value using

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 7

$ns at 0.1 “$cbr start”

$ns at 1.0 “ $ftp start”

$ns at 124.0 “$ftp
stop”

$ns at 124.5 “$cbr

$ns at <time> <event>

Scheduling Events

NS is a discrete event based simulation. The tcp script defines when event should

occur. The initializing command set ns [new Simulator] creates an event scheduler, and

events are then scheduled using the format:

The scheduler is started when running ns that is through the command $ns run.

The beginning and end of the FTP and CBR application can be done through the following

command

Structure of Trace Files

When tracing into an output ASCII file, the trace is organized in 12 fields as follows

in fig shown below, The meaning of the fields are:

Event Time From

Node

To

Node

PKT

Type

PKT

Size

Flags Fid Src

Addr

Dest

Addr

Seq

Num

Pkt

id

1. The first field is the event type. It is given by one of four possible symbols r, +, -, d which

correspond respectively to receive (at the output of the link), enqueued, dequeued and

dropped.

2. The second field gives the time at which the event occurs.

3. Gives the input node of the link at which the event occurs.

4. Gives the output node of the link at which the event occurs.

5. Gives the packet type (eg CBR or TCP)

6. Gives the packet size

7. Some flags

8. This is the flow id (fid) of IPv6 that a user can set for each flow at the input OTcl script

one can further use this field for analysis purposes; it is also used when specifying stream

color for the NAM display.

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 8

9. This is the source address given in the form of “node.port”.

10. This is the destination address, given in the same form.

11. This is the network layer protocol’s packet sequence number. Even though UDP

implementations in a real network do not use sequence number, ns keeps track of UDP

packet sequence number for analysis purposes

12. The last field shows the Unique id of the packet.

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 9

XGRAPH

The xgraph program draws a graph on an x-display given data read from either data

file or from standard input if no files are specified. It can display upto 64 independent data

sets using different colors and line styles for each set. It annotates the graph with a title, axis

labels, grid lines or tick marks, grid labels and a legend.

Syntax:

Options are listed here

/-bd <color> (Border)

This specifies the border color of the xgraph window.

/-bg <color> (Background)

This specifies the background color of the xgraph window.

/-fg<color> (Foreground)

This specifies the foreground color of the xgraph window.

/-lf <fontname> (LabelFont)

All axis labels and grid labels are drawn using this font.

/-t<string> (Title Text)

This string is centered at the top of the graph.

/-x <unit name> (XunitText)

This is the unit name for the x-axis. Its default is “X”.

/-y <unit name> (YunitText)

This is the unit name for the y-axis. Its default is “Y”.

Xgraph [options] file-name

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 10

awk option ‘selection_criteria {action}’ file(s)

Awk –F”|” –f empawk.awk empn.lst

Awk- An Advanced

Awk is a programmable, pattern-matching, and processing tool available in UNIX. It

works equally well with text and numbers.

Awk is not just a command, but a programming language too. In other words, awk

utility is a pattern scanning and processing language. It searches one or more files to see if

they contain lines that match specified patterns and then perform associated actions, such as

writing the line to the standard output or incrementing a counter each time it finds a match.

Syntax:

Here, selection_criteria filters input and select lines for the action component to act

upon. The selection_criteria is enclosed within single quotes and the action within the curly

braces. Both the selection_criteria and action forms an awk program.

Example: $ awk ‘/manager/ {print}’ emp.lst

Variables

Awk allows the user to use variables of there choice. You can now print a serial

number, using the variable kount, and apply it those directors drawing a salary exceeding

6700:

$ awk –F”|” ‘$3 == “director” && $6 > 6700 {

kount =kount+1

printf “ %3f %20s %-12s %d\n”, kount,$2,$3,$6 }’ empn.lst

THE –f OPTION: STORING awk PROGRAMS IN A FILE

You should holds large awk programs in separate file and provide them with the awk

extension for easier identification. Let’s first store the previous program in the file

empawk.awk:

$ cat empawk.awk

Observe that this time we haven’t used quotes to enclose the awk program. You can

now use awk with the –f filename option to obtain the same output:

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 11

THE BEGIN AND END SECTIONS

Awk statements are usually applied to all lines selected by the address, and if there are

no addresses, then they are applied to every line of input. But, if you have to print something

before processing the first line, for example, a heading, then the BEGIN section can be used

gainfully. Similarly, the end section useful in printing some totals after processing is over.

The BEGIN and END sections are optional and take the form

BEGIN {action}

END {action}

These two sections, when present, are delimited by the body of the awk program. You

can use them to print a suitable heading at the beginning and the average salary at the end.

BUILT-IN VARIABLES

Awk has several built-in variables. They are all assigned automatically, though it is

also possible for a user to reassign some of them. You have already used NR, which signifies

the record number of the current line. We’ll now have a brief look at some of the other

variable.

The FS Variable: as stated elsewhere, awk uses a contiguous string of spaces as the default

field delimiter. FS redefines this field separator, which in the sample database happens to be

the |. When used at all, it must occur in the BEGIN section so that the body of the program

knows its value before it starts processing:

BEGIN {FS=”|”}

This is an alternative to the –F option which does the same thing.

The OFS Variable: when you used the print statement with comma-separated arguments,

each argument was separated from the other by a space. This is awk’s default output field

separator, and can reassigned using the variable OFS in the BEGIN section:

BEGIN { OFS=”~” }

When you reassign this variable with a ~ (tilde), awk will use this character for delimiting the

print arguments. This is a useful variable for creating lines with delimited fields.

The NF variable: NF comes in quite handy for cleaning up a database of lines that don’t

contain the right number of fields. By using it on a file, say emp.lst, you can locate those lines

not having 6 fields, and which have crept in due to faulty data entry:

$awk ‘BEGIN {FS = “|”}

NF! =6 {

Print “Record No “, NR, “has”, “fields”}’ empx.lst

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 12

Part-A

Experiment No: 1 Date:

THREE NODE POINT TO POINT NETWORK

Aim: Implement three nodes point – to – point network with duplex links between them. Set
the queue size, vary the bandwidth and find the number of packets dropped.

set ns [new Simulator] # Letter S is capital

set nf [open lab1.nam w] # open a nam trace file in write mode

$ns namtrace-all $nf # nf nam filename

set tf [open lab1.tr w] # tf trace filename

$ns trace-all $tf

proc finish { } {

global ns nf tf

$ns flush-trace # clears trace file contents

close $nf

close $tf

exec nam lab1.nam &

exit 0

}

set n0 [$ns node] # creates 3 nodes

set n2 [$ns node]

set n3 [$ns node]

$ns duplex-link $n0 $n2 200Mb 10ms DropTail # establishing links

$ns duplex-link $n2 $n3 1Mb 1000ms DropTail

$ns queue-limit $n0 $n2 10

set udp0 [new Agent/UDP] # attaching transport layer protocols

$ns attach-agent $n0 $udp0

set cbr0 [new Application/Traffic/CBR] # attaching application layer protocols

$cbr0 set packetSize_ 500

$cbr0 set interval_ 0.005

$cbr0 attach-agent $udp0

set null0 [new Agent/Null] # creating sink(destination) node

$ns attach-agent $n3 $null0

$ns connect $udp0 $null0

$ns at 0.1 "$cbr0 start"

$ns at 1.0 "finish"

$ns run

AWK file: (Open a new editor using “vi command” and write awk file and save with “.awk”

extension)

#immediately after BEGIN should open braces ‘{‘

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 13

BEGIN{ c=0;}

{

if($1= ="d")

{ c++;

printf("%s\t%s\n",$5,$11);

}

}

END{ printf("The number of packets dropped is %d\n",c); }

Steps for execution

 Open gedit editor and type program. Program name should have the extension

“ .tcl ”

[root@localhost ~]# gedit lab1.tcl

 Save the program and close the file.

 Open gedit editor and type awk program. Program name should have the

extension “.awk ”

[root@localhost ~]# gedit lab1.awk

 Save the program and close the file.

 Run the simulation program

[root@localhost~]# ns lab1.tcl

 Here “ns” indicates network simulator. We get the topology shown in the

snapshot.

 Now press the play button in the simulation window and the simulation will

begins.

 After simulation is completed run awk file to see the output ,

[root@localhost~]# awk –f lab1.awk lab1.tr

 To see the trace file contents open the file as ,

[root@localhost~]# gedit lab1.tr

Trace file contains 12 columns:

Event type, Event time, From Node, To Node, Packet Type, Packet Size, Flags

(indicated by --------), Flow ID, Source address, Destination address, Sequence ID,

Packet ID

Contents of Trace File Topology Output

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 14

Experiment No: 2 Date:

TRANSMISSION OF PING MESSAGE

Aim: Implement transmission of ping messages/trace route over a network topology

consisting of 6 nodes and find the number of packets dropped due to congestion.

set ns [new Simulator]

set nf [open lab2.nam w]

$ns namtrace-all $nf

set tf [open lab2.tr w]

$ns trace-all $tf

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

set n4 [$ns node]

set n5 [$ns node]

$ns duplex-link $n0 $n4 1005Mb 1ms DropTail

$ns duplex-link $n1 $n4 50Mb 1ms DropTail

$ns duplex-link $n2 $n4 2000Mb 1ms DropTail

$ns duplex-link $n3 $n4 200Mb 1ms DropTail

$ns duplex-link $n4 $n5 1Mb 1ms DropTail

set p1 [new Agent/Ping] # letters A and P should be capital

$ns attach-agent $n0 $p1

$p1 set packetSize_ 50000

$p1 set interval_ 0.0001

set p2 [new Agent/Ping] # letters A and P should be capital

$ns attach-agent $n1 $p2

set p3 [new Agent/Ping] # letters A and P should be capital

$ns attach-agent $n2 $p3

$p3 set packetSize_ 30000

$p3 set interval_ 0.00001

set p4 [new Agent/Ping] # letters A and P should be capital

$ns attach-agent $n3 $p4

set p5 [new Agent/Ping] # letters A and P should be capital

$ns attach-agent $n5 $p5

$ns queue-limit $n0 $n4 5

$ns queue-limit $n2 $n4 3

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 15

$ns queue-limit $n4 $n5 2

Agent/Ping instproc recv {from rtt} {

$self instvar node_

puts "node [$node_ id] received answer from $from with round trip time $rtt msec"

}

please provide space between $node_ and id. No space between $ and from. No space

between and $ and rtt */

$ns connect $p1 $p5

$ns connect $p3 $p4

proc finish { } {

global ns nf tf

$ns flush-trace

close $nf

close $tf

exec nam lab2.nam &

exit 0

}

$ns at 0.1 "$p1 send"

$ns at 0.2 "$p1 send"

$ns at 0.3 "$p1 send"

$ns at 0.4 "$p1 send"

$ns at 0.5 "$p1 send"

$ns at 0.6 "$p1 send"

$ns at 0.7 "$p1 send"

$ns at 0.8 "$p1 send"

$ns at 0.9 "$p1 send"

$ns at 1.0 "$p1 send"

$ns at 0.1 "$p3 send"

$ns at 0.2 "$p3 send"

$ns at 0.3 "$p3 send"

$ns at 0.4 "$p3 send"

$ns at 0.5 "$p3 send"

$ns at 0.6 "$p3 send"

$ns at 0.7 "$p3 send"

$ns at 0.8 "$p3 send"

$ns at 0.9 "$p3 send"

$ns at 1.0 "$p3 send"

$ns at 2.0 "finish"

$ns run

AWK file: (Open a new editor using “gedit command” and write awk file and save with

“.awk” extension)

BEGIN{

drop=0;

}

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 16

{

if($1= ="d")

{

drop++;

}

}

END{

printf("Total number of %s packets dropped due to congestion =%d\n",$5,drop);

}

Steps for execution

 Open gedit editor and type program. Program name should have the extension

“ .tcl ”

[root@localhost ~]# gedit lab2.tcl

 Save the program and close the file.

 Open gedit editor and type awk program. Program name should have the

extension “.awk ”

[root@localhost ~]# gedit lab2.awk

 Save the program and close the file.

 Run the simulation program

[root@localhost~]# ns lab2.tcl

 Here “ns” indicates network simulator. We get the topology shown in the

snapshot.

 Now press the play button in the simulation window and the simulation will

begins.

 After simulation is completed run awk file to see the output ,

[root@localhost~]# awk –f lab2.awk lab2.tr

 To see the trace file contents open the file as ,

[root@localhost~]# gedit lab2.tr

Topology Output

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 17

Output

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 18

Experiment No: 3 Date:

ETHERNET LAN USING N-NODES WITH MULTIPLE TRAFFIC

Aim: Implement an Ethernet LAN using n nodes and set multiple traffic nodes and plot

congestion window for different source / destination

set ns [new Simulator]

set tf [open lab3.tr w]

$ns trace-all $tf

set nf [open lab3.nam w]

$ns namtrace-all $nf

set n0 [$ns node]

$n0 color "magenta"

$n0 label "src1"

set n1 [$ns node]

set n2 [$ns node]

$n2 color "magenta"

$n2 label "src2"

set n3 [$ns node]

$n3 color "blue"

$n3 label "dest2"

set n4 [$ns node]

set n5 [$ns node]

$n5 color "blue"

$n5 label "dest1"

$ns make-lan "$n0 $n1 $n2 $n3 $n4" 100Mb 100ms LL Queue/ DropTail Mac/802_3

$ns duplex-link $n4 $n5 1Mb 1ms DropTail

set tcp0 [new Agent/TCP]

$ns attach-agent $n0 $tcp0

set ftp0 [new Application/FTP]

$ftp0 attach-agent $tcp0

$ftp0 set packetSize_ 500

$ftp0 set interval_ 0.0001

set sink5 [new Agent/TCPSink]

$ns attach-agent $n5 $sink5

$ns connect $tcp0 $sink5

set tcp2 [new Agent/TCP]

$ns attach-agent $n2 $tcp2

set ftp2 [new Application/FTP]

$ftp2 attach-agent $tcp2

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 19

$ftp2 set packetSize_ 600

$ftp2 set interval_ 0.001

set sink3 [new Agent/TCPSink]

$ns attach-agent $n3 $sink3

$ns connect $tcp2 $sink3

set file1 [open file1.tr w]

$tcp0 attach $file1

set file2 [open file2.tr w]

$tcp2 attach $file2

$tcp0 trace cwnd_ # must put underscore (_) after cwnd and no space between them

$tcp2 trace cwnd_

proc finish { } {

global ns nf tf

$ns flush-trace

close $tf

close $nf

exec nam lab3.nam &

exit 0

}

$ns at 0.1 "$ftp0 start"

$ns at 5 "$ftp0 stop"

$ns at 7 "$ftp0 start"

$ns at 0.2 "$ftp2 start"

$ns at 8 "$ftp2 stop"

$ns at 14 "$ftp0 stop"

$ns at 10 "$ftp2 start"

$ns at 15 "$ftp2 stop"

$ns at 16 "finish"

$ns run

AWK file: (Open a new editor using “gedit command” and write awk file and save with
“.awk” extension)

cwnd:- means congestion window

BEGIN {

}

{

if($6= ="cwnd_") # don’t leave space after writing cwnd_

printf("%f\t%f\t\n",$1,$7); # you must put \n in printf

}

END {

}

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 20

Steps for execution

 Open gedit editor and type program. Program name should have the extension

“ .tcl ”

[root@localhost ~]# gedit lab3.tcl

 Save the program and close the file.

 Open gedit editor and type awk program. Program name should have the

extension “.awk ”

[root@localhost ~]# gedit lab3.awk

 Save the program and close the file.

 Run the simulation program

[root@localhost~]# ns lab3.tcl

 Here “ns” indicates network simulator. We get the topology shown in the

snapshot.

 Now press the play button in the simulation window and the simulation will

begins.

 After simulation is completed run awk file to see the output ,

[root@localhost~]# awk –f lab3.awk file1.tr > a1

[root@localhost~]# awk –f lab3.awk file2.tr > a2

[root@localhost~]# xgraph a1 a2\

 Here we are using the congestion window trace files i.e. file1.tr and file2.tr and we

are redirecting the contents of those files to new files say a1 and a2 using output

redirection operator (>).

 To see the trace file contents open the file as ,

Topolgy:

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 21

Output:

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 22

Experiment No: 4 Date:

SIMPLE ESS WITH WIRELESS LAN

Aim: Implement simple ESS and with transmitting nodes in wire-less LAN by simulation and

determine the performance with respect to transmission of packets.

set ns [new Simulator]

set tf [open lab4.tr w]

$ns trace-all $tf

set topo [new Topography]

$topo load_flatgrid 1000 1000

set nf [open lab4.nam w]

$ns namtrace-all-wireless $nf 1000 1000

$ns node-config -adhocRouting DSDV \

-llType LL \

-macType Mac/802_11 \

-ifqType Queue/DropTail \

-ifqLen 50 \

-phyType Phy/WirelessPhy \

-channelType Channel/WirelessChannel \

-prrootype Propagation/TwoRayGround \

-antType Antenna/OmniAntenna \

-topoInstance $topo \

-agentTrace ON \

-routerTrace ON

create-god 3

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

$n0 label "tcp0"

$n1 label "sink1/tcp1"

$n2 label "sink2"

$n0 set X_ 50

$n0 set Y_ 50

$n0 set Z_ 0

$n1 set X_ 100

$n1 set Y_ 100

$n1 set Z_ 0

$n2 set X_ 600

$n2 set Y_ 600

$n2 set Z_ 0

$ns at 0.1 "$n0 setdest 50 50 15"

$ns at 0.1 "$n1 setdest 100 100 25"

$ns at 0.1 "$n2 setdest 600 600 25"

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 23

set tcp0 [new Agent/TCP]

$ns attach-agent $n0 $tcp0

set ftp0 [new Application/FTP]

$ftp0 attach-agent $tcp0

set sink1 [new Agent/TCPSink]

$ns attach-agent $n1 $sink1

$ns connect $tcp0 $sink1

set tcp1 [new Agent/TCP]

$ns attach-agent $n1 $tcp1

set ftp1 [new Application/FTP]

$ftp1 attach-agent $tcp1

set sink2 [new Agent/TCPSink]

$ns attach-agent $n2 $sink2

$ns connect $tcp1 $sink2

$ns at 5 "$ftp0 start"

$ns at 5 "$ftp1 start"

$ns at 100 "$n1 setdest 550 550 15"

$ns at 190 "$n1 setdest 70 70 15"

proc finish { } {

global ns nf tf

$ns flush-trace

exec nam lab4.nam &

close $tf

exit 0

}

$ns at 250 "finish"

$ns run

AWK file: (Open a new editor using “gedit command” and write awk file and save with
“.awk” extension)

BEGIN{

count1=0

count2=0

pack1=0

pack2=0

time1=0

time2=0

}

{

if($1= ="r"&& $3= ="_1_" && $4= ="AGT")

{

count1++

pack1=pack1+$8

time1=$2

}

if($1= ="r" && $3= ="_2_" && $4= ="AGT")

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 24

{

count2++

pack2=pack2+$8

time2=$2

}

}

END{

printf("The Throughput from n0 to n1: %f Mbps \n”, ((count1*pack1*8)/(time1*1000000)));
printf("The Throughput from n1 to n2: %f Mbps", ((count2*pack2*8)/(time2*1000000)));

}

Steps for execution

 Open gedit editor and type program. Program name should have the extension

“ .tcl ”

[root@localhost ~]# gedit lab4.tcl

 Save the program and close the file.

 Open gedit editor and type awk program. Program name should have the

extension “.awk ”

[root@localhost ~]# gedit lab4.awk

 Save the program and close the file.

 Run the simulation program

[root@localhost~]# ns lab4.tcl

 Here “ns” indicates network simulator. We get the topology shown in the

snapshot.

 Now press the play button in the simulation window and the simulation will

begins.

 After simulation is completed run awk file to see the output ,

[root@localhost~]# awk –f lab4.awk lab4.tr

 To see the trace file contents open the file as ,

[root@localhost~]# gedit lab4.tr

Output:

Node 1 and 2 are communicating Node 2 is moving towards node 3

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 25

Node 2 is coming back from node 3 towards node1 Trace File

Here “M” indicates mobile nodes, “AGT” indicates Agent Trace, “RTR” indicates

Route Trace

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 26

Experiment No: 5 Date:

PERFORMANCE OF GSM USING MAC LAYER

Aim: Implement and study the performance of GSM on NS2/NS3 (Using MAC layer) or

equivalent environment.

Source Code:

General Parameters

set stop 100 ;# Stop time.

Topology

set type gsm ;#type of link:

AQM parameters

set minth 30 ;

set maxth 0 ;

set adaptive 1 ;# 1 for Adaptive RED, 0 for plain RED

Traffic generation.

set flows 0 ;# number of long-lived TCP flows

set window 30 ;# window for long-lived traffic

set web 2 ;# number of web sessions

Plotting statics.

set opt(wrap) 100 ;# wrap plots?

set opt(srcTrace) is ;# where to plot traffic

set opt(dstTrace) bs2;# where to plot traffic

#default downlink bandwidth in bps

set bwDL(gsm) 9600

#default uplink bandwidth in bps

set bwUL(gsm) 9600

#default downlink propagation delay in seconds

set propDL(gsm) .500

#default uplink propagation delay in seconds

set propUL(gsm) .500

set ns [new Simulator]

set tf [open out.tr w]

$ns trace-all $tf

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 27

set nodes(is) [$ns node]

set nodes(ms) [$ns node]

set nodes(bs1) [$ns node]

set nodes(bs2) [$ns node]

set nodes(lp) [$ns node]

proc cell_topo {} {

global ns nodes

$ns duplex-link $nodes(lp) $nodes(bs1) 3Mbps 10nodes(ms) DropTail

$ns duplex-link $nodes(bs1) $nodes(ms) 1 1 RED

$ns duplex-link $nodes(ms) $nodes(bs2) 1 1 RED

$ns duplex-link $nodes(bs2) $nodes(is) 3Mbps 50nodes(ms) DropTail

puts " GSM Cell Topology"

}

proc set_link_para {t} {

global ns nodes bwUL bwDL propUL propDL buf

$ns bandwidth $nodes(bs1) $nodes(ms) $bwDL($t) duplex

$ns bandwidth $nodes(bs2) $nodes(ms) $bwDL($t) duplex

$ns delay $nodes(bs1) $nodes(ms) $propDL($t) duplex

$ns delay $nodes(bs2) $nodes(ms) $propDL($t) duplex

$ns queue-limit $nodes(bs1) $nodes(ms) 10

$ns queue-limit $nodes(bs2) $nodes(ms) 10

}

RED and TCP parameters

Queue/RED set adaptive_ $adaptive

Queue/RED set thresh_ $minth

Queue/RED set maxthresh_ $maxth

Agent/TCP set window_ $window

source web.tcl

#Create topology

switch $type {

gsm -

gprs -

umts {cell_topo}

}

set_link_para $type

$ns insert-delayer $nodes(ms) $nodes(bs1) [new Delayer]

$ns insert-delayer $nodes(ms) $nodes(bs2) [new Delayer]

Set up forward TCP connection

if {$flows == 0} {

set tcp1 [$ns create-connection TCP/Sack1 $nodes(is) TCPSink/Sack1 $nodes(lp)

0]

set ftp1 [[set tcp1] attach-app FTP]

$ns at 0.8 "[set ftp1] start"

}

if {$flows > 0} {

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 28

set tcp1 [$ns create-connection TCP/Sack1 $nodes(is) TCPSink/Sack1 $nodes(lp) 0]

set ftp1 [[set tcp1] attach-app FTP]

$tcp1 set window_ 100

$ns at 0.0 "[set ftp1] start"

$ns at 3.5 "[set ftp1] stop"

set tcp2 [$ns create-connection TCP/Sack1 $nodes(is) TCPSink/Sack1 $nodes(lp) 0]

set ftp2 [[set tcp2] attach-app FTP]

$tcp2 set window_ 3

$ns at 1.0 "[set ftp2] start"

$ns at 8.0 "[set ftp2] stop"

}

proc stop {} {

global nodes opt nf

set wrap $opt(wrap)

set sid [$nodes($opt(srcTrace)) id]

set did [$nodes($opt(dstTrace)) id]

set a "out.tr"

set GETRC "../../../bin/getrc"

set RAW2XG "../../../bin/raw2xg"

exec $GETRC -s $sid -d $did -f 0 out.tr | \

$RAW2XG -s 0.01 -m $wrap -r > plot.xgr

exec $GETRC -s $did -d $sid -f 0 out.tr | \

$RAW2XG -a -s 0.01 -m $wrap >> plot.xgr

exec xgraph -x time -y packets plot.xgr &

exit 0

}

$ns at $stop "stop"

$ns run

Output: ns lab5.tcl

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 29

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 30

Experiment No: 6 Date:

PERFORMANCE OF CDMA

Aim: Implement and study the performance of CDMA on NS2/NS3 (Using stack called Call

net) or equivalent environment.

Source Code:

General Parameters

set stop 100 ;# Stop time.

Topology

set type cdma ;#type of link:

AQM parameters

set minth 30 ;

set maxth 0 ;

set adaptive 1 ;# 1 for Adaptive RED, 0 for plain RED

Traffic generation.

set flows 0 ;# number of long-lived TCP flows

set window 30 ;# window for long-lived traffic

set web 2 ;# number of web sessions

Plotting statics.

set opt(wrap) 100 ;# wrap plots?

set opt(srcTrace) is ;# where to plot traffic

set opt(dstTrace) bs2;# where to plot traffic

#default downlink bandwidth in bps

set bwDL(cdma) 384000

#default uplink bandwidth in bps

set bwUL(cdma) 64000

#default downlink propagation delay in seconds

set propDL(cdma) .150

#default uplink propagation delay in seconds

set propUL(cdma) .150

set ns [new Simulator]

set tf [open out.tr w]

$ns trace-all $tf

set nodes(is) [$ns node]

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 31

set nodes(ms) [$ns node]

set nodes(bs1) [$ns node]

set nodes(bs2) [$ns node]

set nodes(lp) [$ns node]

proc cell_topo {} {

global ns nodes

$ns duplex-link $nodes(lp) $nodes(bs1) 3Mbps 10nodes(ms) DropTail

$ns duplex-link $nodes(bs1) $nodes(ms) 1 1 RED

$ns duplex-link $nodes(ms) $nodes(bs2) 1 1 RED

$ns duplex-link $nodes(bs2) $nodes(is) 3Mbps 50nodes(ms) DropTail

puts " cdma Cell Topology"

}

proc set_link_para {t} {

global ns nodes bwUL bwDL propUL propDL buf

$ns bandwidth $nodes(bs1) $nodes(ms) $bwDL($t) duplex

$ns bandwidth $nodes(bs2) $nodes(ms) $bwDL($t) duplex

$ns delay $nodes(bs1) $nodes(ms) $propDL($t) duplex

$ns delay $nodes(bs2) $nodes(ms) $propDL($t) duplex

$ns queue-limit $nodes(bs1) $nodes(ms) 20

$ns queue-limit $nodes(bs2) $nodes(ms) 20

}

RED and TCP parameters

Queue/RED set adaptive_ $adaptive

Queue/RED set thresh_ $minth

Queue/RED set maxthresh_ $maxth

Agent/TCP set window_ $window

source web.tcl

#Create topology

switch $type {

cdma {cell_topo}

}

set_link_para $type

$ns insert-delayer $nodes(ms) $nodes(bs1) [new Delayer]

$ns insert-delayer $nodes(ms) $nodes(bs2) [newDelayer]

Set up forward TCP connection

if {$flows == 0} {

set tcp1 [$ns create-connection TCP/Sack1 $nodes(is) TCPSink/Sack1 $nodes(lp) 0]

set ftp1 [[set tcp1] attach-app FTP]

$ns at 0.8 "[set ftp1] start"

}

if {$flows > 0} {

set tcp1 [$ns create-connection TCP/Sack1 $nodes(is) TCPSink/Sack1 $nodes(lp) 0]

set ftp1 [[set tcp1] attach-app FTP]

$tcp1 set window_ 100

$ns at 0.0 "[set ftp1] start"

$ns at 3.5 "[set ftp1] stop"

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 32

set tcp2 [$ns create-connection TCP/Sack1 $nodes(is) TCPSink/Sack1 $nodes(lp) 0]

set ftp2 [[set tcp2] attach-app FTP]

$tcp2 set window_ 3

$ns at 1.0 "[set ftp2] start"

$ns at 8.0 "[set ftp2] stop"

}

proc stop { } {

global nodes opt nf

set wrap $opt(wrap)

set sid [$nodes($opt(srcTrace)) id]

set did [$nodes($opt(dstTrace)) id]

set a "out.tr"

set GETRC "../../../bin/getrc"

set RAW2XG "../../../bin/raw2xg"

exec $GETRC -s $sid -d $did -f 0 out.tr | \

$RAW2XG -s 0.01 -m $wrap -r > plot.xgr

exec $GETRC -s $did -d $sid -f 0 out.tr | \

$RAW2XG -a -s 0.01 -m $wrap >> plot.xgr

exec xgraph -x time -y packets plot.xgr &

exit 0

}

$ns at $stop "stop"

$ns run

Output: ns lab6.tcl

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 33

CDMA Trace file:

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 34

Part-B

Experiment No: 1 Date:

Error Detecting Code Using CRC-CCITT (16-bit)

Aim: Write a Program for ERROR detecting code using CRC-CCITT (16bit).

Whenever digital data is stored or interfaced, data corruption might occur. Since the

beginning of computer science, developers have been thinking of ways to deal with this type

of problem. For serial data they came up with the solution to attach a parity bit to each sent

byte. This simple detection mechanism works if an odd number of bits in a byte changes, but

an even number of false bits in one byte will not be detected by the parity check. To

overcome this problem developers have searched for mathematical sound mechanisms to

detect multiple false bits. The CRC calculation or cyclic redundancy check was the result of

this. Nowadays CRC calculations are used in all types of communications. All packets sent

over a network connection are checked with a CRC. Also each data block on your hard disk

has a CRC value attached to it. Modern computer world cannot do without these CRC

calculations. So let's see why they are so widely used. The answer is simple; they are

powerful, detect many types of errors and are extremely fast to calculate especially when

dedicated hardware chips are used.

The idea behind CRC calculation is to look at the data as one large binary number.

This number is divided by a certain value and the remainder of the calculation is called the

CRC. Dividing in the CRC calculation at first looks to cost a lot of computing power, but it

can be performed very quickly if we use a method similar to the one learned at school. We

will as an example calculate the remainder for the character 'm'—which is 1101101 in binary

notation—by dividing it by 19 or 10011. Please note that 19 is an odd number. This is

necessary as we will see further on. Please refer to your schoolbooks as the binary calculation

method here is not very different from the decimal method you learned when you were

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 35

young. It might only look a little bit strange. Also notations differ between countries, but the

method is similar.

With decimal calculations you can quickly check that 109 divided by 19 gives a

quotient of 5 with 14 as the remainder. But what we also see in the scheme is that every bit

extra to check only costs one binary comparison and in 50% of the cases one binary

subtraction. You can easily increase the number of bits of the test data string—for example to

56 bits if we use our example value "Lammert"—and the result can be calculated with 56

binary comparisons and an average of 28 binary subtractions. This can be implemented in

hardware directly with only very few transistors involved. Also software algorithms can be

very efficient.

All of the CRC formulas you will encounter are simply checksum algorithms based

on modulo-2 binary division where we ignore carry bits and in effect the subtraction will be

equal to an exclusive or operation. Though some differences exist in the specifics across

different CRC formulas, the basic mathematical process is always the same:

 The message bits are appended with c zero bits; this augmented message is the

dividend

 A predetermined c+1-bit binary sequence, called the generator polynomial, is the

divisor

 The checksum is the c-bit remainder that results from the division operation

Table 1 lists some of the most commonly used generator polynomials for 16- and 32-bit

CRCs. Remember that the width of the divisor is always one bit wider than the remainder.

So, for example, you’d use a 17-bit generator polynomial whenever a 16-bit checksum is

required.

Table 1: International Standard CRC Polynomials

 CRC-CCITT CRC-16 CRC-32

Checksum

Width
16 bits 16 bits 32 bits

Generator

Polynomial
10001000000100001 11000000000000101 100000100110000010001110110110111

Error detection with CRC

Consider a message represented by the polynomial M(x)

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 36

Consider a generating polynomial G(x)

This is used to generate a CRC = C(x) to be appended to M(x).

Note this G(x) is prime.

Steps:

1. Multiply M(x) by highest power in G(x). i.e. Add So much zeros to M(x).

2. Divide the result by G(x). The remainder = C(x).

Special case: This won't work if bitstring =all zeros. We don't allow such an

M(x).But M(x) bitstring = 1 will work, for example. Can divide 1101 into 1000.

3. If: x div y gives remainder c

that means: x = n y + c

Hence (x-c) = n y

(x-c) div y gives remainder 0

Here (x-c) = (x+c)

Hence (x+c) div y gives remainder 0

4. Transmit: T(x) = M(x) + C(x)

5. Receiver end: Receive T(x). Divide by G(x), should have remainder 0.

Note if G(x) has order n - highest power is xn,

then G(x) will cover (n+1) bits

and the remainder will cover n bits.

i.e. Add n bits (Zeros) to message.

Some CRC polynomials that are actually used

Some CRC polynomials

 CRC-8:

x
8
+x

2
+x+1

o Used in: 802.16 (along with error correction).

 CRC-CCITT:

x
16

+x
12

+x
5
+1

o Used in: HDLC, SDLC, PPP default

 IBM-CRC-16 (ANSI):

x
16

+x
15

+x
2
+1

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 37

 802.3:

x
32

+x
26

+x
23

+x
22

 +x
16

+x
12

+x
11

+x
10

 +x
8
+x

7
+x

5
+x

4
+x

2
+x+1

o Used in: Ethernet, PPP rootion

Source Code:

import java.util.*;
class crc

{ void div(int a[],int k)

{ int gp[]={1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1};

int count=0;

for(int i=0;i<k;i++)

{

if(a[i]==gp[0])

{

for(int j=i;j<17+i;j++)

{

a[j]=a[j]^gp[count++];

}

count=0;

}

}

}

public static void main(String args[])

{

int a[]=new int[100];

int b[]=new int[100];

int len,k;

crc ob=new crc();
System.out.println("Enter the length of Data Frame:");

Scanner sc=new Scanner(System.in);

len=sc.nextInt();

int flag=0;

System.out.println("Enter the Message:");

for(int i=0;i<len;i++)

{ a[i]=sc.nextInt();
}

for(int i=0;i<16;i++)

{ a[len++]=0;

}

k=len-16;

for(int i=0;i<len;i++)
{ b[i]=a[i];

}

ob.div(a,k);

for(int i=0;i<len;i++)

a[i]=a[i]^b[i];

System.out.println("Data to be transmitted: ");

for(int i=0;i<len;i++)

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 38

{

System.out.print(a[i]+" ");

}

System.out.println();

System.out.println("Enter the Reveived Data: ");
for(int i=0;i<len;i++)

{

a[i]=sc.nextInt();

}

ob.div(a, k);

for(int i=0;i<len;i++)

{

if(a[i]!=0)

{

System.out.println("ERROR in Received data");

return;

}

System.out.println("no error");

}

}

}

Output:

Enter the length of Data Frame: 4

Enter the Message: 1 0 1 1

Data to be transmitted: 1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 0 1 0 1 1

Enter the Received Data: 1 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 1

ERROR in Received Data

**

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 39

Experiment No: 2 Date:

Bellman-ford Algorithm

Aim: Write a program to find the shortest path between vertices using bellman-ford

algorithm.

Distance Vector Algorithm is a decentralized routing algorithm that requires that each

router simply inform its neighbors of its routing table. For each network path, the receiving

routers pick the neighbor advertising the lowest cost, then add this entry into its routing table

for re-advertisement. To find the shortest path, Distance Vector Algorithm is based on one of

two basic algorithms: the Bellman-Ford and the Dijkstra algorithms.

Routers that use this algorithm have to maintain the distance tables (which is a one-

dimension array -- "a vector"), which tell the distances and shortest path to sending packets to

each node in the network. The information in the distance table is always upd by exchanging

information with the neighboring nodes. The number of data in the table equals to that of all

nodes in networks (excluded itself). The columns of table represent the directly attached

neighbors whereas the rows represent all destinations in the network. Each data contains the

path for sending packets to each destination in the network and distance/or time to transmit

on that path (we call this as "cost"). The measurements in this algorithm are the number of

hops, latency, the number of outgoing packets, etc.\

The Bellman–Ford algorithm is an algorithm that computes shortest paths from a single

source vertex to all of the other vertices in a weighted digraph. It is slower than Dijkstra's

algorithm for the same problem, but more versatile, as it is capable of handling graphs in which

some of the edge weights are negative numbers. Negative edge weights are found in various

applications of graphs, hence the usefulness of this algorithm. If a graph contains a "negative

cycle" (i.e. a cycle whose edges sum to a negative value) that is reachable from the source, then

there is no cheapest path: any path that has a point on the negative cycle can be made cheaper by

one more walk around the negative cycle. In such a case, the Bellman–Ford algorithm can detect

negative cycles and report their existence

Implementation Algorithm:

1. send my routing table to all my neighbors whenever my link table changes

2. when I get a routing table from a neighbor on port P with link metric M:

a. add L to each of the neighbor's metrics

b. for each entry (D, P', M') in the updated neighbor's table:

i. if I do not have an entry for D, add (D, P, M') to my routing table

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 40

ii. if I have an entry for D with metric M", add (D, P, M') to my routing

table if M' < M"

3. if my routing table has changed, send all the new entries to all my neighbors.

Source Code:

import java.util.Scanner;

public class BellmanFord

{ private int D[];

private int num_ver;

public static final int MAX_VALUE = 999;

public BellmanFord(int n)

{ this.n=n;
D = new int[n+1];

}

public void shortest(int s,int A[][])
{ for (int i=1;i<=n;i++)

{ D[i]=MAX_VALUE;

} D[s] = 0;

for(int k=1;k<=n-1;k++)

{ for(int i=1;i<=n;i++)

{ for(int j=1;j<=n;j++)

{ if(A[i][j]!=MAX_VALUE)

{ if(D[j]>D[i]+A[i][j])

D[j]=D[i]+A[i][j];

}
}

}

}

for(int i=1;i<=n;i++)
{ for(int j=1;j<=n;j++)

{ if(A[i][j]!=MAX_VALUE)

{ if(D[j]>D[i]+A[i][j])

{

System.out.println("The Graph contains negative egde cycle");

return;

} }

}

}

for(int i=1;i<=n;i++)

{

System.out.println("Distance of source " + s + " to "+ i + " is " + D[i]);
}

}

public static void main(String[] args)

{ int n=0,s;

Scanner sc = new Scanner(System.in);

System.out.println("Enter the number of vertices");

n = sc.nextInt();

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 41

int A[][] = new int[n+1][n+1];

System.out.println("Enter the Weighted Matrix");

for(int i=1;i<=n;i++)

{ for(int j=1;j<=n;j++)

{ A[i][j]=sc.nextInt();

if(i==j)

{ A[i][j]=0;

continue;

}
if(A[i][j]==0)

{ A[i][j]=MAX_VALUE;
}

}

}

System.out.println("Enter the source vertex");

s=sc.nextInt();

BellmanFord b = new BellmanFord(n);

b.shortest(s,A);

sc.close();
}

}

Output:

Enter the number of vertices

4

Enter the Weighted Matrix

0 5 0 0

5 0 3 4

0 3 0 2

0 4 2 0

Enter the source vertex

2

Distance of source 2 to 1 is 5

Distance of source 2 to 2 is 0

Distance of source 2 to 3 is 3

Distance of source 2 to 4 is 4

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 42

Experiment No: 3 Date:

Client-server using TCP/IP sockets

Aim: Using TCP/IP Sockets, write a client-server program to make client sending the file

name and the server to send back the contents of the requested file if present. Implement the

above program using as message queues or FIFOs as IPC channels.

Socket is an interface which enables the client and the server to communicate and pass on

information from one another. Sockets provide the communication mechanism between two

computers using TCP. A client program creates a socket on its end of the communication and

attempts to connect that socket to a server. When the connection is made, the server creates a

socket object on its end of the communication.

Source Code:

TCP Server

The server program has three responsibilities which must be fulfilled in the code. First

job is to read the file name coming from client. For this, it uses input stream. Second one is to

open the file, using some input stream, and read the contents. Third one is, as the reading is

going on, to send the contents each line separately.

import java.net.*;

import java.io.*;

public class ContentsServer

{ public static void main(String args[]) throws Exception

{ // establishing the connection with the server

ServerSocket sersock = new ServerSocket(4000);

System.out.println("Server ready for connection");

Socket sock = sersock.accept(); // binding with port: 4000

System.out.println("Connection is successful and waiting for chatting");

// reading the file name from client

InputStream istream = sock.getInputStream();

BufferedReader fileRead =new BufferedReader(new InputStreamReader(istream));

String fname = fileRead.readLine();

// reading file contents

BufferedReader contentRead = new BufferedReader(new FileReader(fname));

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 43

// keeping output stream ready to send the contents

OutputStream ostream = sock.getOutputStream();

PrintWriter pwrite = new PrintWriter(ostream, true);

String str;

// reading line-by-line from file

while((str = contentRead.readLine()) != null)

{ pwrite.println(str); // sending each line to client

}

sock.close();

sersock.close(); // closing network sockets

pwrite.close();

fileRead.close();

contentRead.close();

}

}

TCP Client:

To read filename as input from keyboard, remember, this file should exist on server.

For this, it uses input stream. The file read from keyboard should be sent to the server. For

this client uses output stream. The file contents sent by the server, the client should receive

and print on the console.

BufferedReader:

The System.in is a byte stream and cannot be chained to BufferedReader as

BufferedReader is a character stream. The byte stream System.in is to be converted

(wrapped) into a character stream and then passed to BufferedReader constructor. To take

input from the keyboard, a BufferedReader object, keyRead, is created. To send the file

name to the server, pwrite of PrintWriter and to receive the file contents from the

server, socketRead of BufferedReader are created.

PrintWriter pwrite = new PrintWriter(ostream, true);

import java.net.*;

import java.io.*;

public class ContentsClient

{ public static void main(String args[]) throws Exception

http://way2java.com/io/keyboard-input-%e2%80%93-character-streams-bufferedreader/
http://way2java.com/io/printwriter-%e2%80%93-formatting-data/

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 44

{

Socket sock = new Socket("127.0.0.1", 4000);

// reading the file name from keyboard. Uses input stream

System.out.print("Enter the file name");

BufferedReader keyRead = new BufferedReader(new InputStreamReader(System.in));

String fname = keyRead.readLine();

// sending the file name to server. Uses PrintWriter

OutputStream ostream = sock.getOutputStream();

PrintWriter pwrite = new PrintWriter(ostream, true);

pwrite.println(fname);

// receiving the contents from server. Uses input stream

InputStream istream = sock.getInputStream();

BufferedReader socketRead = new BufferedReader(new InputStreamReader(istream));

String str;

while((str = socketRead.readLine()) != null) // reading line-by-line

{ System.out.println(str);

} pwrite.close();

socketRead.close();

keyRead.close();

}

}

Output:

At server side:

[root@localhost]# javac ContentsServer.java

[root@localhost]# Java ContentsServer

Server ready for connection

Connection is successful and waiting for chatting

At Client Side:

[root@localhost]# javac ContentsClient.java

[root@localhost]# java ContentsClient

Enter the file name

aa.txt

Welcome to Network Lab

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 45

Experiment No: 4 Date:

Client-Server Communication

Aim: Write a program on datagram socket for client/server to display the messages on client

side, typed at the server side.

A datagram socket is the one for sending or receiving point for a packet delivery service.

Each packet sent or received on a datagram socket is individually addressed and routed. Multiple

packets sent from one machine to another may be routed differently, and may arrive in any

order.

Here, the connectionServer.java program creates a ServerSocket object bound to port

3456 and waits for an incoming client connection request. When a client contacts the server

program, the accept() method is unblocked and returns a Socket object for the server to

communicate with the particular client that contacted.

The server program then creates a PrintStream object through the output stream extracted

from this socket and uses it to send a welcome message to the contacting client. The client

program runs as follows: The client creates a Socket object to connect to the server running at

the specified IP address or hostname and at the port number 3456. The client creates a

BufferedReader object through the input stream extracted from this socket and waits for an

incoming line of message from the other end. The readLine() method of the BufferedReader

object blocks the client from proceeding further unless a line of message is received. The

purpose of the flush() method of the PrintStream class is to write any buffered output bytes

to the underlying output stream and then flush that stream to send out the bytes. Note that the

server program in our example sends a welcome message to an incoming client request and

then stops.

Source Code:

UDP Client

import java.net.*;

import java.io.*;

class connectionClient

{ public static void main(String[] args)

{

try

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 46

{ InetAddress acceptorHost = InetAddress.getByName(args[0]);

int serverPortNum = Integer.parseInt(args[1]);

Socket clientSocket = new Socket(acceptorHost, serverPortNum);

BufferedReader br = new BufferedReader(new InputStreamReader(clientSocket.getInputStream()));

System.out.println(br.readLine());

clientSocket.close();

}

catch(Exception e)

{ e.printStackTrace();

}

}

}

UDP Server

import java.net.*;

import java.io.*;

class connectionServer

{ public static void main(String[] args)

{

try

{ String message = args[0];

int serverPortNumber = Integer.parseInt(args[1]);

ServerSocket connectionSocket = new ServerSocket(serverPortNumber);

Socket dataSocket = connectionSocket.accept();

PrintStream socketOutput = new PrintStream(dataSocket.getOutputStream());

socketOutput.println(message);

System.out.println("sent response to client");

socketOutput.flush();

dataSocket.close();

connectionSocket.close();

}

catch(Exception e)

{ e.printStackTrace();

}

}

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 47

}

Output:

Server Side

[root@localhost]# Javac ConnectionServer.java

[root@localhost]# Java ConnectionServer “Welcome to Computer Network Lab”

3956

Client Side:

[root@localhost]# Javac ConnectionClient.java

[root@localhost]# Java ConnectionClient localhost 3956

Welcome to Computer Network Lab

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 48

Experiment No: 5 Date:

RSA Algorithm to Encrypt and Decrypt the Data

Aim: C Program for Simple RSA Algorithm to encrypt and decrypt the data

The RSA algorithm can be used for both public key encryption and digital signatures.

Its security is based on the difficulty of factoring large integers.

The RSA algorithm's efficiency requires a fast method for performing the modular

exponentiation operation. A less efficient, conventional method includes raising a number

(the input) to a power (the secret or public key of the algorithm, denoted e and d,

respectively) and taking the remainder of the division with N. A straight-forward

implementation performs these two steps of the operation sequentially: first, raise it to the

power and second, apply modulo.

A very simple example of RSA encryption

This is an extremely simple example using numbers you can work out on a pocket

calculator (those of you over the age of 35 can probably even do it by hand on paper).

1. Select primes p = 11, q = 3.

2. n = pq = 11.3 = 33

phi = (p-1)(q-1) = 10.2 = 20

3. Choose e=3

Check gcd(e, p-1) = gcd(3, 10) = 1 (i.e. 3 and 10 have no common factors except 1),

and check gcd(e, q-1) = gcd(3, 2) = 1

therefore gcd(e, phi) = gcd(e, (p-1)(q-1)) = gcd(3, 20) = 1

4. Compute d such that ed ≡ 1 (mod phi)

i.e. compute d = e
^-1

 mod phi = 3
^-1

 mod 20

i.e. find a value for d such that phi divides (ed-1)

i.e. find d such that 20 divides 3d-1.

Simple testing (d = 1, 2, ...) gives d = 7

Check: ed-1 = 3.7 - 1 = 20, which is divisible by phi.

5. Public key = (n, e) = (33, 3)

Private key = (n, d) = (33, 7).

This is actually the smallest possible value for the modulus n for which the RSA

algorithm works.

Now say we want to encrypt the message m = 7,

c = m
^e

 mod n = 7
^3

 mod 33 = 343 mod 33 = 13.

Hence the ciphertext c = 13.

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 49

To check decryption we compute

m' = c
^d

 mod n = 13
^7

 mod 33 = 7.

Note that we don't have to calculate the full value of 13 to the power 7 here. We can

make use of the fact that a = bc mod n = (b mod n).(c mod n) mod n so we can break down a

potentially large number into its components and combine the results of easier, smaller

calculations to calculate the final value.

One way of calculating m' is as follows:-

m' = 13
^7

 mod 33 = 13
^(3+3+1)

 mod 33 = 13
^3

.13
^3

.13 mod 33

= (13
^3

 mod 33).(13
^3

 mod 33).(13 mod 33) mod 33

= (2197 mod 33).(2197 mod 33).(13 mod 33) mod 33

= 19.19.13 mod 33 = 4693 mod 33

= 7.

Now if we calculate the cipher text c for all the possible values of m (0 to 32), we get

m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

c 0 1 8 27 31 26 18 13 17 3 10 11 12 19 5 9 4

m 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

c 29 24 28 14 21 22 23 30 16 20 15 7 2 6 25 32

Note that all 33 values of m (0 to 32) map to a unique code c in the same range in a

sort of random manner. In this case we have nine values of m that map to the same value of c

- these are known as unconcealed messages. m = 0 and 1 will always do this for any N, no

matter how large. But in practice, higher values shouldn't be a problem when we use large

values for N.

If we wanted to use this system to keep secrets, we could let A=2, B=3, ..., Z=27. (We

specifically avoid 0 and 1 here for the reason given above). Thus the plaintext message

"HELLOWORLD" would be represented by the set of integers m1, m2, ...

{9,6,13,13,16,24,16,19,13,5}

Using our table above, we obtain ciphertext integers c1, c2, ...

{3,18,19,19,4,30,4,28,19,26}

Note that this example is no more secure than using a simple Caesar substitution

cipher, but it serves to illustrate a simple example of the mechanics of RSA encryption.

Remember that calculating m^e mod n is easy, but calculating the inverse c^-e mod n

is very difficult, well, for large n's anyway. However, if we can factor n into its prime factors

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 50

p and q, the solution becomes easy again, even for large n's. Obviously, if we can get hold of

the secret exponent d, the solution is easy, too.

Key Generation Algorithm

1. Generate two large random primes, p and q, of approximately equal size such that

their product n = pq is of the required bit length, e.g. 1024 bits. [See note 1].

2. Compute n = pq and (φ) phi = (p-1)(q-1).

3. Choose an integer e, 1 < e < phi, such that gcd(e, phi) = 1. [See note 2].

4. Compute the secret exponent d, 1 < d < phi, such that

ed ≡ 1 (mod phi). [See note 3].

5. The public key is (n, e) and the private key is (n, d). The values of p, q, and phi

should also be kept secret.

 n is known as the modulus.

 e is known as the public exponent or encryption exponent.

 d is known as the secret exponent or decryption exponent.

Encryption

Sender A does the following:-

1. Obtains the recipient B's public key (n, e).

2. Represents the plaintext message as a positive integer m [see note 4].

3. Computes the ciphertext c = m
^e

 mod n.

4. Sends the ciphertext c to B.

Decryption

Recipient B does the following:-

1. Uses his private key (n, d) to compute m = c
^d

 mod n.

2. Extracts the plaintext from the integer representative m.

Source Code:

import java.util.*;

import java.io.*;

public class rsa

{ static int gcd(int m,int n)
{ while(n!=0)

{ int r=m%n;
m=n;

n=r;

}
return m;

}

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 51

public static void main(String args[])

{

int p=0,q=0,n=0,e=0,d=0,phi=0;

int nummes[]=new int[100];

int encrypted[]=new int[100];
int decrypted[]=new int[100];

int i=0,j=0,nofelem=0;

Scanner sc=new Scanner(System.in);

String message ;

System.out.println("Enter the Message tobe encrypted:");
message= sc.nextLine();

System.out.println("Enter value of p and q\n");

p=sc.nextInt();

q=sc.nextInt();
n=p*q;

phi=(p-1)*(q-1);

for(i=2;i<phi;i++)

if(gcd(i,phi)==1) break;

e=i;

for(i=2;i<phi;i++)

if((e*i-1)%phi==0)

break;

d=i;

for(i=0;i<message.length();i++)

{

char c = message.charAt(i);
int a =(int)c;

nummes[i]=c-96;

}

nofelem=message.length();

for(i=0;i<nofelem;i++)

{

encrypted[i]=1;
for(j=0;j<e;j++)

encrypted[i] =(encrypted[i]*nummes[i])%n;
}

System.out.println("\n Encrypted message\n");
for(i=0;i<nofelem;i++)

{

System.out.print(encrypted[i]);

System.out.print((char)(encrypted[i]+96));

}
for(i=0;i<nofelem;i++)

{ decrypted[i]=1;

for(j=0;j<d;j++)

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 52

decrypted[i]=(decrypted[i]*encrypted[i])%n;

}

System.out.println("\n Decrypted message\n ");

for(i=0;i<nofelem;i++)

System.out.print((char)(decrypted[i]+96));

return;

}

}

#**

RESULT

Enter the text:

hello

Enter the value of P and Q :

5

7

Encrypted Text is: 8 h 10 j 17 q 17 q 15 o

Decrypted Text is: hello

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 53

Experiment No: 6 Date:

Congestion Control Using Leaky Bucket Algorithm

Aim: C Program for Congestion control using Leaky Bucket Algorithm

The main concept of the leaky bucket algorithm is that the output data flow remains

constant despite the variant input traffic, such as the water flow in a bucket with a small hole

at the bottom. In case the bucket contains water (or packets) then the output flow follows a

constant rate, while if the bucket is full any additional load will be lost because of spillover.

In a similar way if the bucket is empty the output will be zero.

From network perspective, leaky bucket consists of a finite queue (bucket) where all the

incoming packets are stored in case there is space in the queue, otherwise the packets are

discarded. In order to regulate the output flow, leaky bucket transmits one packet from the

queue in a fixed time (e.g. at every clock tick). In the following figure we can notice the

main rationale of leaky bucket algorithm, for both the two approaches (e.g. leaky bucket with

water (a) and with packets (b)).

Figure 2.4 - The leaky bucket traffic shaping algorithm

While leaky bucket eliminates completely bursty traffic by regulating the incoming

data flow its main drawback is that it drops packets if the bucket is full. Also, it doesn’t take

into account the idle process of the sender which means that if the host doesn’t transmit data

for some time the bucket becomes empty without permitting the transmission of any packet.

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 54

Implementation Algorithm:

Steps:

1. Read The Data For Packets

2. Read The Queue Size

3. Divide the Data into Packets

4. Assign the random Propagation delays for each packets to input into the bucket

(input_packet).

5. wlile((Clock++<5*total_packets)and

(out_packets< total_paclets))

a. if (clock == input_packet)

i. insert into Queue

b. if (clock % 5 == 0)

i. Remove paclet from Queue

6. End

Source Code:

import java.util.*;

public class leaky

{

static int min(int x,int y)
{

if(x<y)

return x;

else

return y;

}

public static void main(String[] args)

{ int drop=0,mini,nsec,cap,count=0,i,process;

int inp[]=new int[25];

Scanner sc=new Scanner(System.in);

sec");

System.out.println("Enter The Bucket Size\n");

cap= sc.nextInt();

System.out.println("Enter The Operation Rate\n");

process= sc.nextInt();

System.out.println("Enter The No. Of Seconds You Want To Stimulate\n");

nsec=sc.nextInt();

for(i=0;i<nsec;i++)

{ System.out.print("Enter The Size Of The Packet Entering At "+ i+1 + "

inp[i] = sc.nextInt();

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 55

}

System.out.println("\nSecond | Packet Recieved | Packet Sent | Packet Left |

Packet Dropped|\n");

System.out.println(" \n");

for(i=0;i<nsec;i++)

{ count+=inp[i];

if(count>cap)

{ drop=count-cap;

count=cap;

}

Output:

}
System.out.print(i+1);

System.out.print("\t\t"+inp[i]);

mini=min(count,process);

System.out.print("\t\t"+mini);

count=count-mini;

System.out.print("\t\t"+count);

System.out.print("\t\t"+drop);

drop=0;

System.out.println();

}

for(;count!=0;i++)

{

if(count>cap)

{

drop=count-cap;

count=cap;

}

System.out.print(i+1);

System.out.print("\t\t0");

mini=min(count,process);

System.out.print("\t\t"+mini);

count=count-mini;

System.out.print("\t\t"+count);

System.out.print("\t\t"+drop);

System.out.println();

}
}

Enter The Bucket Size

5

Enter The Operation Rate

2

Enter The No. Of Seconds You Want To Stimulate

3

Enter The Size Of The Packet Entering At 1 sec

5

Enter The Size Of The Packet Entering At 1 sec

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 56

4

Enter The Size Of The Packet Entering At 1 sec

3

Second|Packet Recieved|Packet Sent|Packet Left|Packet Dropped|

1 5 2 3 0

2 4 2 3 2

3 3 2 3 1
4 0 2 1 0
5 0 1 0 0

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 57

VIVA QUESTIONS

1. What are functions of different layers?

2. Differentiate between TCP/IP Layers and OSI Layers

3. Why header is required?

4. What is the use of adding header and trailer to frames?

5. What is encapsulation?

6. Why fragmentation requires?

7. What is MTU?

8. Which layer imposes MTU?

9. Differentiate between flow control and congestion control.

10. Differentiate between Point-to-Point Connection and End-to-End connections.

11. What are protocols running in different layers?

12. What is Protocol Stack?

13. Differentiate between TCP and UDP.

14. Differentiate between Connectionless and connection oriented connection.

15. Why frame sorting is required?

16. What is meant by subnet?

17. What is meant by Gateway?

18. What is an IP address?

19. What is MAC address?

20. Why IP address is required when we have MAC address?

21. What is meant by port?

22. What are ephemerical port number and well known port numbers?

23. What is a socket?

24. What are the parameters of socket()?

25. Describe bind(), listen(), accept(),connect(), send() and recv().

26. What are system calls? Mention few of them.

27. What is IPC? Name three techniques.

28. Explain mkfifo(), open(), close() with parameters.

29. What is meant by file descriptor?

30. What is meant by traffic shaping?

31. How do you classify congestion control algorithms?

32. Differentiate between Leaky bucket and Token bucket.

33. How do you implement Leaky bucket?

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 58

34. How do you generate busty traffic?

35. What is the polynomial used in CRC-CCITT?

36. What are the other error detection algorithms?

37. What is difference between CRC and Hamming code?

38. Why Hamming code is called 7,4 code?

39. What is odd parity and even parity?

40. What is meant by syndrome?

41. What is generator matrix?

42. What is spanning tree?

43. Differentiate between Prim’s and Kruskal’s algorithm.

44. What are Routing algorithms?

45. How do you classify routing algorithms? Give examples for each.

46. What are drawbacks in distance vector algorithm?

47. How routers update distances to each of its neighbor?

48. How do you overcome count to infinity problem?

49. What is cryptography?

50. How do you classify cryptographic algorithms?

51. What is public key?

52. What is private key?

53. What are key, ciphertext and plaintext?

54. What is simulation?

55. What are advantages of simulation?

56. Differentiate between Simulation and Emulation.

57. What is meant by router?

58. What is meant by bridge?

59. What is meant by switch?

60. What is meant by hub?

61. Differentiate between route, bridge, switch and hub.

62. What is ping and telnet?

63. What is FTP?

64. What is BER?

65. What is meant by congestion window?

66. What is BSS?

67. What is incoming throughput and outgoing throughput?

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 59

68. What is collision?

69. How do you generate multiple traffics across different sender-receiver pairs?

70. How do you setup Ethernet LAN?

71. What is meant by mobile host?

72. What is meant by NCTUns?

73. What are dispatcher, coordinator and nctunsclient?

74. Name few other Network simulators

75. Differentiate between logical and physical address.

76. Which address gets affected if a system moves from one place to another place?

77. What is ICMP? What are uses of ICMP? Name few.

78. Which layer implements security for data?

Computer Network Laboratory 2022-23

Dept. of ISE, CIT, Gubbi Page no 60

REFERENCE

1. Communication Networks: Fundamental Concepts and Key

Architectures - Alberto Leon, Garcia and Indra Widjaja, 3
rd

 Edition, Tata

McGraw- Hill, 2004.

2. Data and Computer Communication, William Stallings, 8
th

t
Edition,

Pearson Education, 2007.

3. Computer Networks: A Systems Approach - Larry L. Peterson and Bruce S.

David, 4th Edition, Elsevier, 2007.

4. Introduction to Data Communications and Networking – Wayne Tomasi,

Pearson Education, 2005.

5. Communication Networks – Fundamental Concepts and Key

architectures – Alberto Leon- Garcia and Indra Widjaja:, 2
rd

 Edition, Tata

McGraw-Hill, 2004

6. Computer and Communication Networks – Nader F. Mir:, Pearson

Education, 2007.

