
Channabasaveshwara Institute of Technology 
(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi) 

 

(NAAC Accredited & ISO 9001:2015 Certified Institution) 

NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka. 

 

 

 

 

 

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING 

 

 

 

 

 

LAB MANUAL 
(2021-22) 

 

 

 

 

 

18ISL67 - FILE STRUCTURES LABORATORY WITH MINI 

PROJECT 

 
VI Semester ISE 

 
Name:    

 

 

USN:    
 

 

Batch: Section:    



Channabasaveshwara Institute of Technology 
(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi) 

 

(NAAC Accredited & ISO 9001:2015 Certified Institution) 

NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka. 

 

 

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING 

 
CONTENTS 

 

 

 
 

SL 

NO 
TITLE PAGE NO 

1 Introduction 01 

 
2 

To read series of names, one per line, from standard input 

and write these names spelled in reverse order to the 

standard output using I/O redirection and pipes. 

 
27 

3 Fixed-length records 30 

4 Variable - Length records 38 

5 Variable - Length records using RRN 46 

6 Simple index on primary key 52 

7 Index on secondary key 59 

8 Cosequential match 67 

9 K-way merge algorithm with k = 8. 71 

10 Viva questions 76 



FILE STRUCTURES LABORATORY WITH MINI PROJECT 
 

[As per Choice Based Credit System (CBCS) scheme] 

 
 

SEMESTER – VI 

Subject Code: 18ISL67 IA Marks: 20 

Number of Lecture Hours/Week: 01I + 02P Exam Marks: 80 

Total Number of Lecture Hours: 40 Exam Hours: 03 

CREDITS – 02 

Course objectives: 

This course will enable students to 

 Apply the concepts of Unix IPC to implement a given function. 

 Measure the performance of different file structures 

 Write a program to manage operations on given file system. 

 Demonstrate hashing and indexing techniques 

 

Description (If any): 

Design, develop, and implement the following programs 

Lab Experiments: 

PART A 

1. Write a program to read series of names, one per line, from standard input and write these 

names spelled in reverse order to the standard output using I/O redirection and pipes. Repeat the 

exercise using an input file specified by the user instead of the standard input and using an output 

file specified by the user instead of the standard output. 

2. Write a program to read and write student objects with fixed-length records and the fields 

delimited by “|”. Implement pack ( ), unpack ( ), modify ( ) and search ( ) methods. 

3. Write a program to read and write student objects with Variable - Length records using any 

suitable record structure. Implement pack ( ), unpack ( ), modify ( ) and search ( ) methods. 

4. Write a program to write student objects with Variable - Length records using any suitable 

record structure and to read from this file a student record using RRN. 



 

5. Write a program to implement simple index on primary key for a file of student objects. 

Implement add ( ), search ( ), delete ( ) using the index. 

6. Write a program to implement index on secondary key, the name, for a file of student objects. 

Implement add ( ), search ( ), delete ( ) using the secondary index. 

7. Write a program to read two lists of names and then match the names in the two lists using 

Consequential Match based on a single loop. Output the names common to both the lists. 

8. Write a program to read k Lists of names and merge them using k-way merge algorithm with 

k = 8. 

Part B --- Mini project: 

Student should develop mini project on the topics mentioned below or similar applications 

Document processing, transaction management, indexing and hashing, buffer management, 

configuration management. Not limited to these. 

 
Course outcomes: 

The students should be able to: 

 Implement operations related to files 

 Apply the concepts of file system to produce the given application. 

 Evaluate performance of various file systems on given parameters. 

 

Conduction of Practical Examination: 

1. All laboratory experiments from part A are to be included for practical examination. 

2. Mini project has to be evaluated for 30 Marks as per 6(b). 

3. Report should be prepared in a standard format prescribed for project work. 

4. Students are allowed to pick one experiment from the lot. 

5. Strictly follow the instructions as printed on the cover page of answer script. 

6. Marks distribution: 

 Part A: Procedure + Conduction + Viva:10 + 35 +5 =50 Marks 

 Part B: Demonstration + Report + Viva voce = 15+10+05 = 30 Marks 

7. Change of experiment is allowed only once and marks allotted to the procedure 

part to be made zero. 



File Structures Laboratory 17ISL68 

Dept., of ISE. -1- C.I.T. Gubbi-572 216. 

 

 

File Structures 
 

File Structures is the Organization of Data in Secondary Storage devices in such a way that  

minimize the access time and the storage space. A File structure is a combination of 

representations for data in files and of operations for accessing the data. 

A File structure allows applications to read, write and modify data. It might also 

support finding the data that matches some search criteria or reading through the data in some 

particular order. 

 
Data Representation in Memory 

 

Record: 

A subdivision of a file, containing data related to a single entity. 

 

Field : 

A subdivision of a record containing a single attribute of the entity which the 

record describes. 

Stream of bytes: 

A file which is regarded as being without structure beyond separation into a 

sequential set of bytes. 

 

1. Within a program, data is temporarily stored in variables. 

2. Individual values can be aggregated into structures, which can be treated as a single 

variable with parts. 

3. In C++, classes are typically used as as an aggregate structure. 

4. C++ Person class (version 0.1): 

 

class Person { 

public: 

char FirstName [11]; 

char LastName[11]; 

char Address [21]; 

char City [21]; 

char State [3]; 

char ZIP [5]; 

}; 

 

With this class declaration, variables can be declared to be of type Person. The individual 

fields within a Person can be referred to as the name of the variable and the name of the field,  

separated by a period (.). 

 

EX : C++ Program: 

#include<iostream.h> 

#include<string.h> 

class Person { 

public: 
char FirstName [11]; 

char LastName[11]; 

char Address [31]; 



File Structures Laboratory 17ISL68 

Dept., of ISE. -2- C.I.T. Gubbi-572 216. 

 

 

char City [21]; 

char State [3]; 
char ZIP [5]; 

}; 

void Display (Person); 

int main () 

{ 

Person Clerk; 

strcpy (Clerk.FirstName, "Fred"); strcpy (Clerk.LastName, "Flintstone"); 

strcpy (Clerk.Address, "4444 Granite Place"); 

strcpy (Clerk.City, "Rockville"); 

strcpy (Clerk.State, "MD"); 

strcpy (Clerk.ZIP, "00001"); 
 

Display (Clerk); 

} 
 

void Display (Person Someone) 

{ 

cout << Someone.FirstName << Someone.LastName<< Someone.Address << 

Someone.City<< Someone.State << Someone.ZIP; 

} 
 

In memory, each Person will appear as an aggregate, with the individual values being parts of 

the aggregate 

 

Person 

Clerk 

FirstName LastName Address City State ZIP 

Fred Flintstone 4444 Granite Place Rockville MD 0001 

 

The output of this program will be: 

 

FredFlintstone4444 Granite PlaceRockvilleMD00001LilyMunster1313 Mockingbird 

LaneHollywoodCA90210 

 

Obviously, this output could be improved. It is marginally readable by people, and it would 

be difficult to program a computer to read and correctly interpret this output. 

 

A Stream File 
 

 In the Windows, DOS, UNIX, and LINUX operating systems, files are not 

internally structured; they are streams of individual bytes. 

 

F r E d  F l i n t s t o n e 4 4 4 4  G r a n ... 

 

 The only file structure recognized by these operating systems is the separation of 

a text file into lines. 



File Structures Laboratory 17ISL68 

Dept., of ISE. -3- C.I.T. Gubbi-572 216. 

 

 

o For Windows and DOS, two characters are used between lines, a carriage 
return (ASCII 13) and a line feed (ASCII 10); 

o For UNIX and LINUX, one character is used between lines, a line feed 
(ASCII 10); 

 

The code in applications programs can, however, impose internal organization on stream files.  

File processing in C++ is performed using the fstream class. Unlike the FILE structure, 

fstream is a complete C++ class with constructors, a destructor and overloaded operators. 

 
To perform file processing, you can declare an instance of an fstream object. If you do not yet 

know the name of the file you want to process, you can use the default constructor. 

 

Unlike the FILE structure, the fstream class provides two distinct classes for file processing. 

One is used to write to a file and the other is used to read from a file. 

 

Opening a File 
 

In C program , the type FILE is used for a file variable and is defined in the stdio.h file. It is 

used to define a file pointer for use in file operations. Before we can write to a file, we must 

open it. What this really means is that we must tell the system that we want to write to a file 

and what the file name is. We do this with the fopen() function illustrated in the first line of 

the program. The file pointer, fp in our case, points to the file and two arguments are required 

in the parentheses, the file name first, followed by the file type. 

In C++ , two way we can open file by using constructor or by using member function 

open(). 

 

1. Open a file by constructor: 
 

You can first declare an instance of the stream class using one of its constructors from the 

following syntaxes to open a file : 

 

 ofstream: Stream class to write on files 

 ifstream: Stream class to read from files 

 fstream: Stream class to both read and write from/to files. 

 

Syntaxes : 

 

ofstream obj(const char* FileName, int FileMode); 

or 

ifstream obj(const char* FileName, int FileMode); 

or 

fstream obj(const char* FileName, int FileMode); 

 

These classes are derived directly or indirectly from the classes istream, and ostream. We 

have already used objects whose   types   were   these   classes:   cin   is   an   object   of 

class istream and cout is an object of class ostream. Therefore, we have already been using 

classes that are related to our file streams. And in fact, we can use our file streams the same 

way we are already used to use cin and cout, with the only difference that we have to 

associate these streams with physical files. 

http://www.functionx.com/cpp/articles/cfileprocessing.htm


File Structures Laboratory 17ISL68 

Dept., of ISE. -4- C.I.T. Gubbi-572 216. 

 

 

 

The first argument of the constructor, FileName, is a constant string that represents the 

file that you want to open. The FileMode argument is a natural number that follows the table 

of modes as we described below. 



File Structures Laboratory 17ISL68 

Dept., of ISE. -5- C.I.T. Gubbi-572 216. 

 

 

 
 

Mode Description 

ios::app If FileName is a new file, data is written to it. 

If FileName already exists and contains data, then it is opened, the compiler 

goes to the end of the file and adds the new data to it. 

ios::ate If FileName is a new file, data is written to it and subsequently added to the 

end of the file. 

If FileName already exists and contains data, then it is opened and data is 

written in the current position. 

ios::in If FileName is a new file, then it gets created fine as an empty file. 

If FileName already exists, then it is opened and its content is made available 

for processing 

ios::out If FileName is a new file, then it gets created fine as an empty file. Once/Since 

it gets created empty, you can write data to it. 

If FileName already exists, then it is opened, its content is destroyed, and the 

file becomes as new. Therefore you can create new data to write to it. Then, if 

you save the file, which is the main purpose of this mode, the new content is 

saved it.*This operation is typically used when you want to save a file 

ios::trunk If FileName already exists, its content is destroyed and the file becomes as new 

ios::nocreate If FileName is a new file, the operation fails because it cannot create a new 

file. 

If FileName already exists, then it is opened and its content is made available 

for processing 

ios::noreplace If FileName is a new file, then it gets created fine. 

If FileName already exists and you try to open it, this operation would fail 

because it cannot create a file of the same name in the same location. 

 

 

 

Let's see an example: 

 
1 

2 
3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

// basic file operations 

#include <iostream> 

#include <fstream> 

using namespace std; 

[file example.txt] 

Writing this to a file. 

int main () { 

ofstream myfile("example.txt"); 

myfile << "Writing this to a file.\n"; 

myfile.close(); 

return 0; 

} 

 

 

http://www.functionx.com/cpp/articles/filestreaming.htm


File Structures Laboratory 17ISL68 

Dept., of ISE. -6- C.I.T. Gubbi-572 216. 

 

 

This code creates a file called example.txt and inserts a sentence into it in the same way we 
are used to do without, but using the file stream myfile instead. 

 

2. Member function open(). 
 

The first operation generally performed on an object of one of these classes is to associate it 

to a real file. This procedure is known as to open a file. An open file is represented within a 

program by a stream object (an instantiation of one of these classes, in the previous example 

this was myfile) and any input or output operation performed on this stream object will be 

applied to the physical file associated to it. 

 

In order to open a file with a stream object we use its member function open(): 

 

open (filename, mode); 

 

Where filename is a null-terminated character sequence of type const char * (the same type 

that string literals have) representing the name of the file to be opened, and mode is an 

optional parameter with a combination of the flags. flags can be combined using the bitwise 

operator OR (|). For example, if we want to open the fileexample.bin in binary mode to add 

data we could do it by the following call to member function open(): 

 
1 

2 
 

Each one of the open() member functions of the classes ofstream, ifstream and fstream has a 

default mode that is used if the file is opened without a second argument: 

 

class default mode parameter 

ofstream ios::out 

ifstream ios::in 

fstream ios::in | ios::out 

 

For ifstream and ofstream classes, ios::in and ios::out are automatically and respectively 

assumed, even if a mode that does not include them is passed as second argument to 

the open() member function. 

 

The default value is only applied if the function is called without specifying any value for the 

mode parameter. If the function is called with any value in that parameter the default mode is 

overridden, not combined. 

 

File streams opened in binary mode perform input and output operations independently of 

any format considerations. Non-binary files are known as text files, and some translations 

may occur due to formatting of some special characters (like newline and carriage return 

characters). 

 

Since the first task that is performed on a file stream object is generally to open a file, these 

three classes include a constructor that automatically calls the open() member function and 

has the exact same parameters as this member. Therefore, we could also have declared the 

previous myfile object and conducted the same opening operation in our previous example by 

ofstream myfile; 

myfile.open ("example.bin", ios::out | ios::app | ios::binary); 



File Structures Laboratory 17ISL68 

Dept., of ISE. -7- C.I.T. Gubbi-572 216. 

 

 

writing: 
 

 

 

Combining object construction and stream opening in a single statement. Both forms to open 

a file are valid and equivalent. 

 

To check if a file stream was successful opening a file, you can do it by calling to 

member is_open() with no arguments. This member function returns a bool value of true in 

the case that indeed the stream object is associated with an open file, or false otherwise: 

 

 

Closing a file 
When we are finished with our input and output operations on a file we shall close it so that 

its resources become available again. In order to do that we have to call the stream's member 

function close(). This member function takes no parameters, and what it does is to flush the 

associated buffers and close the file: 
 

 

Once this member function is called, the stream object can be used to open another file, and 

the file is available again to be opened by other processes. 

 

In case that an object is destructed while still associated with an open file, the destructor 

automatically calls the member function close(). 

ofstream myfile ("example.bin", ios::out | ios::app | ios::binary); 

if (myfile.is_open()) { /* ok, proceed with output */ } 

myfile.close(); 



File Structures Laboratory 17ISL68 

Dept., of ISE. -8- C.I.T. Gubbi-572 216. 

 

 

 

Text files  

Text file streams are those where we do not include the ios::binary flag in their opening mode. 

These files are designed to store text and thus all values that we input or output from/to them 

can suffer some formatting transformations, which do not necessarily correspond to their 

literal binary value. 

 

Data output operations on text files are performed in the same way we operated with cout: 
 

 

Data input from a file can also be performed in the same way that we did with cin: 

 

// reading a text file This is a line. 

#include <iostream> This is another line. 

#include <fstream>  

#include <string>  

using namespace std;  

int main () { 
 

string line;  

ifstream myfile ("example.txt");  

if (myfile.is_open())  

{  

while ( myfile.good() )  

{  

getline (myfile,line);  

cout << line << endl;  

}  

myfile.close();  

}  

else cout << "Unable to open file";  

return 0;  

}  

[file example.txt] 

This is a line. 

This is another line. 

// writing on a text file 

#include <iostream> 

#include <fstream> 

using namespace std; 

int main () { 

ofstream myfile ("example.txt"); 

if (myfile.is_open()) 

{ 

myfile << "This is a line.₩n"; 

myfile << "This is another line.₩n"; 

myfile.close(); 

} 

else cout << "Unable to open file"; 

return 0; 

} 



File Structures Laboratory 17ISL68 

Dept., of ISE. -9- C.I.T. Gubbi-572 216. 

 

 

 

This last example reads a text file and prints out its content on the screen. Notice how we 

have used a new member function, called good() that returns true in the case that the stream is 

ready for input/output operations. We have created a while loop that finishes when 

indeed myfile.good() is no longer true, which will happen either if the end of the file has been 

reached or if some other error occurred. 

 

Checking state flags  

In addition to good(), which checks whether the stream is ready for input/output operations, 

other member functions exist to check for specific states of a stream (all of them return a bool 

value): 
 

 

bad() 

 

 

fail() 

 

 

eof() 

 

good() 

 
Returns true if a reading or writing operation fails. For example in the case that we try 

to write to a file that is not open for writing or if the device where we try to write has 

no space left. 

 

Returns true in the same cases as bad(), but also in the case that a format error 

happens, like when an alphabetical character is extracted when we are trying to read 

an integer number. 

 

Returns true if a file open for reading has reached the end. 

 

It is the most generic state flag: it returns false in the same cases in which calling any 

of the previous functions would return true. 
 

In order to reset the state flags checked by any of these member functions we have just seen 

we can use the member function clear(), which takes no parameters. 

 

get and put stream pointers  

All i/o streams objects have, at least, one internal stream pointer: 

 

ifstream, like istream, has a pointer known as the get pointer that points to the element to be 

read in the next input operation. 

 

ofstream, like ostream, has a pointer known as the put pointer that points to the location 

where the next element has to be written. 

 

Finally, fstream, inherits both, the get and the put pointers, from iostream (which is itself 

derived from bothistream and ostream). 

 

These internal stream pointers that point to the reading or writing locations within a stream 

can be manipulated using the following member functions: 



File Structures Laboratory 17ISL68 

Dept., of ISE. -10- C.I.T. Gubbi-572 216. 

 

 

tellg() and tellp() 

These two member functions have no parameters and return a value of the member 

type pos_type, which is an integer data type representing the current position of the get 

stream pointer (in the case of tellg) or the put stream pointer (in the case of tellp). 

 

seekg() and seekp() 

These functions allow us to change the position of the get and put stream pointers. Both 

functions are overloaded with two different prototypes. The first prototype is: 

 

seekg ( position ); 

seekp ( position ); 

 
 

Using this prototype the stream pointer is changed to the absolute position position (counting 

from the beginning of the file). The type for this parameter is the same as the one returned by 

functions tellg and tellp: the member type pos_type, which is an integer value. 

 

The other prototype for these functions is: 

 

seekg ( offset, direction ); 

seekp ( offset, direction ); 

 

Using this prototype, the position of the get or put pointer is set to an offset value relative to 

some specific point determined by the parameter direction. offset is of the member 

type off_type, which is also an integer type. Anddirection is of type seekdir, which is an 

enumerated type (enum) that determines the point from where offset is counted from, and that 

can take any of the following values: 

 

ios::beg offset counted from the beginning of the stream 

ios::cur offset counted from the current position of the stream pointer 

ios::end offset counted from the end of the stream 

 

The following example uses the member functions we have just seen to obtain the size of a 

file: 
 

size is: 40 bytes. // obtaining file size 

#include <iostream> 

#include <fstream> 

int main () { 

long begin,end; 

ifstream myfile ("example.txt"); 

begin = myfile.tellg(); 

myfile.seekg (0, ios::end); 

end = myfile.tellg(); 

myfile.close(); 

cout << "size is: " << (end-begin) << " bytes.₩n"; 

return 0; 

} 



File Structures Laboratory 17ISL68 

Dept., of ISE. -11- C.I.T. Gubbi-572 216. 

 

 

Buffers and Synchronization  
 

When we operate with file streams, these are   associated   to an   internal   buffer   of 

type streambuf. This buffer is a memory block that acts as an intermediary between the 

stream and the physical file. For example, with anofstream, each time the member 

function put (which writes a single character) is called, the character is not written directly to 

the physical file with which the stream is associated. Instead of that, the character is inserted 

in that stream's intermediate buffer. 

 

When the buffer is flushed, all the data contained in it is written to the physical medium (if it  

is an output stream) or simply freed (if it is   an   input   stream).   This   process   is 

called synchronization and takes place under any of the following circumstances: 

 

When the file is closed: before closing a file all buffers that have not yet been flushed are 

synchronized and all pending data is written or read to the physical medium. 

 

 When the buffer is full: Buffers have a certain size. When the buffer is full it is 

automatically synchronized. 

 Explicitly, with manipulators: When certain manipulators are used on streams, an 

explicit synchronization takes place. These manipulators are: flush and endl. 

 Explicitly, with member function sync(): Calling stream's member function sync(), 

which takes no parameters, causes an immediate synchronization. This function 

returns an int value equal to -1 if the stream has no associated buffer or in case of 

failure. Otherwise (if the stream buffer was successfully synchronized) it returns 0. 



File Structures Laboratory 17ISL68 

Dept., of ISE. -12- C.I.T. Gubbi-572 216. 

 

 

1. Delineation of Records in a File 
 

 

 

 

A record which is predetermined to be the same length as the other records in the file. 

 

Record 1 Record 2 Record 3 Record 4 Record 5 

 

 The file is divided into records of equal size. 

 All records within a file have the same size. 

 Different files can have different length records. 

 Programs which access the file must know the record length. 

 Offset, or position, of the nth record of a file can be calculated. 

 There is no external overhead for record separation. 

 There may be internal fragmentation (unused space within records.) 

 There will be no external fragmentation (unused space outside of records) except 

for deleted records. 

 Individual records can always be updated in place. 

 Algorithms for Accessing Fixed Length Records 

 Code for Accessing Fixed Length Records 

 Code for Accessing String Records 
 

 

 

1. variable length record 
T E R M S 

A record which can differ in length from the other records of the file. 

2. delimited record 
A variable length record which is terminated by a special character or 

sequence of characters. 

3. delimiter 
A special character or group of characters stored after a field or record, which 

indicates the end of the preceding unit. 

 

Record 1 # Record 2 # Record 3 # Record 4 # Record 5 # 

 

 The records within a file are followed by a delimiting byte or series of bytes. 

 The delimiter cannot occur within the records. 

 Records within a file can have different sizes. 

 Different files can have different length records. 

 Programs which access the file must know the delimiter. 

 Offset, or position, of the nth record of a file cannot be calculated. 

 There is external overhead for record separation equal to the size of the delimiter 

per record. 

 There should be no internal fragmentation (unused space within records.) 

 There may be no external fragmentation (unused space outside of records) after 

file updating. 

Fixed Length Records 

Delimited Variable Length Records 

http://www.comsci.us/fs/general/fixrec.html
http://cpp.comsci.us/examples/stringfile/fixedfile.html
http://cpp.comsci.us/examples/stringfile/stringfile.html


File Structures Laboratory 17ISL68 

Dept., of ISE. -13- C.I.T. Gubbi-572 216. 

 

 

 Individual records cannot always be updated in place. 

 Algorithms for Accessing Delimited Variable Length Records 
 Code for Accessing Delimited Variable Length Records 

 Code for Accessing Variable Length Line Records 
 

 

110 Record 1 40 Record 2 100 Record 3 80 Record 4 70 Record 5 
 

 The records within a file are prefixed by a length byte or bytes. 

 Records within a file can have different sizes. 

 Different files can have different length records. 

 Programs which access the file must know the size and format of the length 

prefix. 

 Offset, or position, of the nth record of a file cannot be calculated. 

 There is external overhead for record separation equal to the size of the length 

prefix per record. 

 There should be no internal fragmentation (unused space within records.) 

 There may be no external fragmentation (unused space outside of records) after 

file updating. 

 Individual records cannot always be updated in place. 

 Algorithms for Accessing Prefixed Variable Length Records 

 Code for Accessing PreFixed Variable Length Records 

Length Prefixed Variable Length Records 

http://www.comsci.us/fs/general/delrec.html
http://cpp.comsci.us/examples/stringfile/delimitedfile.html
http://cpp.comsci.us/examples/stringfile/linefile.html
http://www.comsci.us/fs/general/varrec.html
http://cpp.comsci.us/examples/stringfile/prefixedfile.html


File Structures Laboratory 17ISL68 

Dept., of ISE. -14- C.I.T. Gubbi-572 216. 

 

 

Delineation of Fields in a Record 
 
 

 

Field 1 Field 2 Field 3 Field 4 Field 5 
 

 Each record is divided into fields of correspondingly equal size. 

 Different fields within a record have different sizes. 

 Different records can have different length fields. 

 Programs which access the record must know the field lengths. 

 There is no external overhead for field separation. 

 There may be internal fragmentation (unused space within fields.) 
 

 

Field 1 ! 
Field 

2 
! Field 3 ! Field 4 ! Field 5 ! 

 

 The fields within a record are followed by a delimiting byte or series of bytes. 

 Fields within a record can have different sizes. 

 Different records can have different length fields. 

 Programs which access the record must know the delimiter. 

 The delimiter cannot occur within the data. 

 If used with delimited records, the field delimiter must be different from the 

record delimiter. 

 There is external overhead for field separation equal to the size of the delimiter 

per field. 

 There should be no internal fragmentation (unused space within fields.) 
 

 

12 Field 1 4 Field 2 10 Field 3 8 Field 4 7 Field 5 
 

 The fields within a record are prefixed by a length byte or bytes. 

 Fields within a record can have different sizes. 

 Different records can have different length fields. 

 Programs which access the record must know the size and format of the length 

prefix. 

 There is external overhead for field separation equal to the size of the length 

prefix per field. 

 There should be no internal fragmentation (unused space within fields.) 

Fixed Length Fields 

Delimited Variable Length Fields 

Length Prefixed Variable Length Fields 



File Structures Laboratory 17ISL68 

Dept., of ISE. -15- C.I.T. Gubbi-572 216. 

 

 

 
 

 
Record or field length can be represented in either binary or character form. 

 

 The length can be considered as another hidden field within the record. 

 This length field can be either fixed length or delimited. 

 When character form is used, a space can be used to delimit the length field. 

 A two byte fixed length field could be used to hold lengths of 0 to 65535 bytes in 

binary form. 

 A two byte fixed length field could be used to hold lengths of 0 to 99 bytes in 

decimal character form. 

 A variable length field delimited by a space could be used to hold effectively any 

length. 

 In some languages, such as strict Pascal, it is difficult to mix binary values and 

character values in the same file. 

 The C++ language is flexible enough so that the use of either binary or character 

format is easy. 
 

 

 Tags, in the form "Keyword=Value", can be used in fields. 

 Use of tags does not in itself allow separation of fields, which must be done with 

another method. 

 Use of tags adds significant space overhead to the file. 

 Use of tags does add flexibility to the file structure. 

 Fields can be added without affecting the basic structure of the file. 

 Tags can be useful when records have sparse fields - that is, when a significant 

number of the possible attributes are absent. 
 

Index : 

 
 

Key field : 

 
A structure containing a set of entries, each consisting of a key field and a 

reference field, which is used to locate records in a data file. 

 

The part of an index which contains keys. 

Reference field: 

The part of an index which contains information to locate records. 

 

 An index imposes order on a file without rearranging the file. 

 Indexing works by indirection. 

Representing Record or Field Length 

Tagged Fields 



File Structures Laboratory 17ISL68 

Dept., of ISE. -16- C.I.T. Gubbi-572 216. 

 

 

A Simple Index for Entry-Sequenced Files 

Simple index 
An index in which the entries are a key ordered linear list. 

 

 Simple indexing can be useful when the entire index can be held in memory. 

 Changes (additions and deletions) require both the index and the data file to be 

changed. 

 Updates affect the index if the key field is changed, or if the record is moved. 

 An update which moves a record can be handled as a deletion followed by an 

addition. 
 

Direct access 
Accessing data from a file by record position with the file, without accessing 

intervening records. 

 

Relative record number 
An ordinal number indicating the position of a record within a file. 

 

Primary key 
A key which uniquely identifies the records within a file. 

 

Secondary key 
A search key other than the primary key. 

 

Secondary index 
An index built on a secondary key. 

 

 Secondary indexes can be built on any field of the data file, or on combinations of 

fields. 

 Secondary indexes will typically have multiple locations for a single key. 

 Changes to the data may now affect multiple indexes. 

 The reference field of a secondary index can be a direct reference to the location of 

the entry in the data file. 

 The reference field of a secondary index can also be an indirect reference to the 

location of the entry in the data file, through the primary key. 

 Indirect secondary key references simplify updating of the file set. 

 Indirect secondary key references increase access time. 



File Structures Laboratory 17ISL68 

Dept., of ISE. -17- C.I.T. Gubbi-572 216. 

 

 

Cosequential Algorithms 
 

 Initialize (open the input files.) 

 Get the first item from each list 

 While there is more to do: 

o Compare the current items from each list 

o Based on the comparison, appropriately process one or all items. 

o Get the next item or items from the appropriate list or lists. 
o Based on the whether there were more items, determine if there is more 

to do. 

 Finalize (close the files.) 

 

Match : 
The process of forming a list containing all items common to two or more lists. 

 

 

 

 

 
 

 

 

 

 

 

 
 

 
Merge 

 Initialize (open the input and output files.) 

 Get the first item from each list. 

 While there is more to do: 

o Compare the current items from each list. 

o If the items are equal, 
 Process the item. 
 Get the next item from each list. 

 Set more to true iff none of this lists is at end of file. 

o If the item from list A is less than the item from list B, 

 Get the next item from list A. 
 Set more to true iff list A is not at end-of-file. 

o If the item from list A is more than the item from list B, 

 Get the next item from list B. 

 Set more to true iff list B is not at end-of-file. 

 Finalize (close the files.) 

The process of forming a list containing all items in any of two or more lists. 

 
 

 Initialize (open the input and output files.) 

 Get the first item from each list. 

 While there is more to do: 

o Compare the current items from each list. 

o If the items are equal, 
 Process the item. 
 Get the next item from each list. 

o If the item from list A is less than the item from list B, 

 Process the item from list A. 
 Get the next item from list A. 

o If the item from list A is more than the item from list B, 
 Process the item from list B. 

Cosequential Match Algorithm 

Cosequential Merge Algorithm 



File Structures Laboratory 17ISL68 

Dept., of ISE. -18- C.I.T. Gubbi-572 216. 

 

 

 Get the next item from list B. 

o Set more to false iff all of this lists are at end of file. 
 Finalize (close the files.) 



File Structures Laboratory 17ISL68 

Dept., of ISE. -19- C.I.T. Gubbi-572 216. 

 

 

Hashing 
 

 Key driven file access should be O(1) - that is, the time to access a record should be a 

constant which does not vary with the size of the dataset. 

 Indexing can be regarded as a table driven function which translates a key to a 

numeric location. 

 Hashing can be regarded as a computation driven function which translates a key to a 

numeric location. 

 

Hashing 
The transformation of a search key into a number by means of mathematical 

calculations. 

Randomize 
To transform in an apparently random way. 

 

 Hashing uses a repeatable pseudorandom function. 

 The hashing function should produce a uniform distribution of hash values. 

 

Uniform distribution 
A randomization in which each value in a range has an equal probability. 

 

 For each key, the result of the hashing function is used as the home address of the 

record. 

 home address 

The address produced by the hashing of a record key. 

 

 Under ideal conditions, hashing provides O(1) key driven file access. 
 

 



File Structures Laboratory 17ISL68 

Dept., of ISE. -20- C.I.T. Gubbi-572 216. 

 

 

 

 
 

Hashing Algorithms 

Modulus 
 

 Modulus - the key is divided by the size of the table, and the remainder is used as the 

hash function. 

 Example: 

Key = 123-45-6789 

123456789 % 11 = 5 

h(123-45-6789) = 5 

 Modulus functions work better when the divisor is a prime number, or at least not a 

composite of small numbers. 

 

 
Collision Resolution by Progressive Overflow 

Progressive overflow: 
A collision resolution technique which places overflow records at the first empty 

address after the home address 

 

 With progressive overflow, a sequential search is performed beginning at the home 

address. 

 The search is continued until the desired key or a blank record is found. 

 Progressive overflow is also referred to as linear probing. 

 



File Structures Laboratory 17ISL68 

Dept., of ISE. -21- C.I.T. Gubbi-572 216. 

 

 

Storing more than One Record per Address: Buckets 

Bucket : 
An area of a hash table with a single hash address which has room for more than one 

record. 

 

 When using buckets, an entire bucket is read or written as a unit. (Records are not 

read individually.) 

 The use of buckets will reduce the average number of probes required to find a record. 
 



File Structures Laboratory 17ISL68 

Dept., of ISE. -22- C.I.T. Gubbi-572 216. 

 

 

 

Introduction to Btrees 
 

Tree structures support various basic dynamic set operations including Search, Predecessor, 

Successor, Minimum, Maximum, Insert, and Delete in time proportional to the height of the 

tree. Ideally, a tree will be balanced and the height will be log n where n is the number of 

nodes in the tree. To ensure that the height of the tree is as small as possible and therefore 

provide the best running time, a balanced tree structure like a red-black tree, AVL tree, or b- 

tree must be used. 

 

When working with large sets of data, it is often not possible or desirable to maintain the 

entire structure in primary storage (RAM). Instead, a relatively small portion of the data 

structure is maintained in primary storage, and additional data is read from secondary storage 

as needed. Unfortunately, a magnetic disk, the most common form of secondary storage, is 

significantly slower than random access memory (RAM). In fact, the system often spends 

more time retrieving data than actually processing data. 

 

B-trees are balanced trees that are optimized for situations when part or all of the tree must be 

maintained in secondary storage such as a magnetic disk. Since disk accesses are expensive 

(time consuming) operations, a b-tree tries to minimize the number of disk accesses. For 

example, a b-tree with a height of 2 and a branching factor of 1001 can store over one billion 

keys but requires at most two disk accesses to search for any node . 
 
 

 

The Structure of B-Trees 
 

Unlike a binary-tree, each node of a b-tree may have a variable number of keys and children. 

The keys are stored in non-decreasing order. Each key has an associated child that is the root 

of a subtree containing all nodes with keys less than or equal to the key but greater than the 

preceeding key. A node also has an additional rightmost child that is the root for a subtree 

containing all keys greater than any keys in the node. 

 

A b-tree has a minumum number of allowable children for each node known as the 

minimization factor. If t is this minimization factor, every node must have at least t - 1 keys. 

Under certain circumstances, the root node is allowed to violate this property by having fewer 

than t - 1 keys. Every node may have at most 2t - 1 keys or, equivalently, 2t children. 

 

Since each node tends to have a large branching factor (a large number of children), it is 

typically neccessary to traverse relatively few nodes before locating the desired key. If access 

to each node requires a disk access, then a b-tree will minimize the number of disk accesses 

required. The minimzation factor is usually chosen so that the total size of each node 

corresponds to a multiple of the block size of the underlying storage device. This choice 

simplifies and optimizes disk access. Consequently, a b-tree is an ideal data structure for 

situations where all data cannot reside in primary storage and accesses to secondary storage 

are comparatively expensive (or time consuming). 



File Structures Laboratory 17ISL68 

Dept., of ISE. -23- C.I.T. Gubbi-572 216. 

 

 

Height of B-Trees 
 

For n greater than or equal to one, the height of an n-key b-tree T of height h with a minimum 

degree t greater than or equal to 2, 
 

 

For a proof of the above inequality, refer to Cormen, Leiserson, and Rivest pages 383-384. 

 

The worst case height is O(log n). Since the "branchiness" of a b-tree can be large compared 

to many other balanced tree structures, the base of the logarithm tends to be large; therefore, 

the number of nodes visited during a search tends to be smaller than required by other tree 

structures. Although this does not affect the asymptotic worst case height, b-trees tend to 

have smaller heights than other trees with the same asymptotic height. 
 

 
 

Operations on B-Trees 
 

The algorithms for the search, create, and insert operations are shown below. Note that these 

algorithms are single pass; in other words, they do not traverse back up the tree. Since b-trees 

strive to minimize disk accesses and the nodes are usually stored on disk, this single-pass 

approach will reduce the number of node visits and thus the number of disk accesses. Simpler 

double-pass approaches that move back up the tree to fix violations are possible. 

 

Since all nodes are assumed to be stored in secondary storage (disk) rather than primary 

storage (memory), all references to a given node be be preceeded by a read operation denoted 

by Disk-Read. Similarly, once a node is modified and it is no longer needed, it must be 

written out to secondary storage with a write operation denoted by Disk-Write. The 

algorithms below assume that all nodes referenced in parameters have already had a 

corresponding Disk-Read operation. New nodes are created and assigned storage with the 

Allocate-Node call. The implementation details of the Disk-Read, Disk-Write, and Allocate- 

Node functions are operating system and implementation dependent. 

 

B-Tree-Search(x, k) 

 

i <- 1 
while i <= n[x] and k > keyi[x] 

do i <- i + 1 

if i <= n[x] and k = keyi[x] 

then return (x, i) 

if leaf[x] 

then return NIL 
else Disk-Read(ci[x]) 

return B-Tree-Search(ci[x], k) 



File Structures Laboratory 17ISL68 

Dept., of ISE. -24- C.I.T. Gubbi-572 216. 

 

 

 

The search operation on a b-tree is analogous to a search on a binary tree. Instead of choosing 

between a left and a right child as in a binary tree, a b-tree search must make an n-way choice. 

The correct child is chosen by performing a linear search of the values in the node. After 

finding the value greater than or equal to the desired value, the child pointer to the immediate 

left of that value is followed. If all values are less than the desired value, the rightmost child 

pointer is followed. Of course, the search can be terminated as soon as the desired node is 

found. Since the running time of the search operation depends upon the height of the tree, B- 

Tree-Search is O(logt n). 
 

B-Tree-Create(T) 

 

x <- Allocate-Node() 

leaf[x] <- TRUE 

n[x] <- 0 

Disk-Write(x) 

root[T] <- x 

 

The B-Tree-Create operation creates an empty b-tree by allocating a new root node that has 

no keys and is a leaf node. Only the root node is permitted to have these properties; all other 

nodes must meet the criteria outlined previously. The B-Tree-Create operation runs in time 

O(1). 

 

B-Tree-Split-Child(x, i, y) 

 

z <- Allocate-Node() 

leaf[z] <- leaf[y] 

n[z] <- t - 1 

for j <- 1 to t - 1 

do keyj[z] <- keyj+t[y] 

if not leaf[y] 

then for j <- 1 to t 

do cj[z] <- cj+t[y] 
n[y] <- t - 1 
for j <- n[x] + 1 downto i + 1 

do cj+1[x] <- cj[x] 
ci+1 <- z 

for j <- n[x] downto i 

do keyj+1[x] <- keyj[x] 

keyi[x] <- keyt[y] 
n[x] <- n[x] + 1 

Disk-Write(y) 

Disk-Write(z) 

Disk-Write(x) 

 

If is node becomes "too full," it is necessary to perform a split operation. The split operation 

moves the median key of node x into its parent y where x is the ith child of y. A new node, z, is 

allocated, and all keys in x right of the median key are moved to z. The keys left of the 

median key remain in the original node x. The new node, z, becomes the child immediately to 

the right of the median key that was moved to the parent y, and the original node, x, becomes 

the child immediately to the left of the median key that was moved into the parent y. 



File Structures Laboratory 17ISL68 

Dept., of ISE. -25- C.I.T. Gubbi-572 216. 

 

 

The split operation transforms a full node with 2t - 1 keys into two nodes with t - 1 keys each. 

Note that one key is moved into the parent node. The B-Tree-Split-Child algorithm will run in 

time O(t) where t is constant. 

 

B-Tree-Insert(T, k) 

 

r <- root[T] 

if n[r] = 2t - 1 

then s <- Allocate-Node() 

root[T] <- s 

leaf[s] <- FALSE 

n[s] <- 0 
c1 <- r 

B-Tree-Split-Child(s, 1, r) 

B-Tree-Insert-Nonfull(s, k) 

else B-Tree-Insert-Nonfull(r, k) 

 

B-Tree-Insert-Nonfull(x, k) 

 

i <- n[x] 

if leaf[x] 

then while i >= 1 and k < keyi[x] 

do keyi+1[x] <- keyi[x] 
i <- i - 1 

keyi+1[x] <- k 
n[x] <- n[x] + 1 

Disk-Write(x) 

else while i >= and k < keyi[x] 

do i <- i - 1 

i <- i + 1 
Disk-Read(ci[x]) 
if n[ci[x]] = 2t - 1 

then B-Tree-Split-Child(x, i, ci[x]) 

if k > keyi[x] 
then i <- i + 1 

B-Tree-Insert-Nonfull(ci[x], k) 
 

To perform an insertion on a b-tree, the appropriate node for the key must be located using an 

algorithm similiar to B-Tree-Search. Next, the key must be inserted into the node. If the node 

is not full prior to the insertion, no special action is required; however, if the node is full, the 

node must be split to make room for the new key. Since splitting the node results in moving 

one key to the parent node, the parent node must not be full or another split operation is 

required. This process may repeat all the way up to the root and may require splitting the root 

node. This approach requires two passes. The first pass locates the node where the key should 

be inserted; the second pass performs any required splits on the ancestor nodes. 

 

Since each access to a node may correspond to a costly disk access, it is desirable to avoid the 

second pass by ensuring that the parent node is never full. To accomplish this, the presented 

algorithm splits any full nodes encountered while descending the tree. Although this 

approach may result in unecessary split operations, it guarantees that the parent never needs 



File Structures Laboratory 17ISL68 

Dept., of ISE. -26- C.I.T. Gubbi-572 216. 

 

 

to be split and eliminates the need for a second pass up the tree. Since a split runs in linear 

time, it has little effect on the O(t logt n) running time of B-Tree-Insert. 
 

Splitting the root node is handled as a special case since a new root must be created to contain 

the median key of the old root. Observe that a b-tree will grow from the top. 

 

B-Tree-Delete 

 

Deletion of a key from a b-tree is possible; however, special care must be taken to ensure that 

the properties of a b-tree are maintained. Several cases must be considered. If the deletion 

reduces the number of keys in a node below the minimum degree of the tree, this violation 

must be corrected by combining several nodes and possibly reducing the height of the tree. If 

the key has children, the children must be rearranged. For a detailed discussion of deleting 

from a b-tree, refer to Section 19.3, pages 395-397, of Cormen, Leiserson, and Rivest or to 

another reference listed below. 
 

 

 

Examples 

 

Sample B-Tree 
 

 

Searching a B-Tree for Key 21 
 
 

 

Inserting Key 33 into a B-Tree (w/ Split) 



File Structures Laboratory 17ISL68 

Dept., of ISE. -27- C.I.T. Gubbi-572 216. 

 

 

1. Write a C++ program to read series of names, one per line, from standard input and write 

these names spelled in reverse order to the standard output using I/O redirection and pipes. 

Repeat the exercise using an input file specified by the user instead of the standard input 

and using an output file specified by the user instead of the standard output. 

 

#include<iostream.h> 

#include<fstream.h> 

#include<conio.h> 

#include<string.h> 

void main() 

{ 

char buf[20][20],infile[20],outfile[20],buf1[20]; 

char line[200]; 

int n, i,j,indx,x,y,ch; 

fstream file,file1; 

clrscr(); 

cout<<"Enter your choice₩n1->file I/O₩n2->standard I/O"; 

cin>>ch; 

switch(ch) 

{ 

case 1: 

cout<<"Enter the input file:"<<flush; 

cin>>infile; 

cout<<"Enter the output file:"<<flush; 

cin>>outfile; 

file.open(infile,ios::in); 

 

file.unsetf(ios::skipws); 

file1.open(outfile,ios::out); 

while(1) 

{ 

 

if(!file.eof()) 

{ 

 

 

 

} 

else 

break; 

file.getline(line,'₩n'); 

strrev(line); 

file1<<line; 

file1<<"₩n"; 

 

} 

file.close(); 

file1.close(); 

getch(); 
 

 
case 2: 

break; 

 

cout<<"Enter the number of names "; 

cin>>n; 



File Structures Laboratory 17ISL68 

Dept., of ISE. -28- C.I.T. Gubbi-572 216. 

 

 

for(i=1;i<=n;i++) 

{ 
cout<<"enter name:"<<i<<"₩t"; 

cin>>buf[i]; 

 

} 

for(i=1;i<=n;i++) 

{ 
 

strrev(buf[i]); 

cout<<"reversed name:"<<buf[i]<<endl; 

} 

getch(); 

} 

break; 

} 
 

 

Input/Output : 
Enter your choice₩n1->file I/O₩n2->standard I/O 

2 

Emter the number of names 

3 

enter the name 

CIT 

AIT 

SIT 

The reversed name are: 

TIC 

TIA 

TIS 

 

C:₩TC₩BIN>edit file1.txt 

Computer 

Laptop 

 
 

Enter your choice₩n1->file I/O₩n2->standard I/O 

1 

enter input file name: file1.txt 

enter output filename: file2.txt 

 
C:₩TC₩BIN>edit file1.txt file2.txt 

retupmoC 

potpaL 



File Structures Laboratory 17ISL68 

Dept., of ISE. -29- C.I.T. Gubbi-572 216. 

 

 

Output: 



File Structures Laboratory 17ISL68 

Dept., of ISE. -30- C.I.T. Gubbi-572 216. 

 

 

2. Write a C++ program to read and write student objects with fixed-length records and the 
fields delimited by “|”. Implement pack ( ), unpack ( ), modify ( ) and search ( ) methods. 

 

#include<iostream.h> 

#include<stdio.h> 

#include<fstream.h> 

#include<stdlib.h> 

#include<string.h> 

# include<conio.h> 

 

class Person 

{ 

 

 

 

 

 

public: 

char usn[30]; 

char name[30]; 

char address[30]; 

char branch[30]; 

char college[30]; 

char buffer[50]; 

 

void input(); 

void output(); 

void search(); 

void modify(); 

void pack(); 

void unpack(); 

void Write(); 
 

}; 

 
 

void Person :: input() 

{ 

cout<<"Enter Usn"<<endl; 

cin>>usn; 

cout<<"Enter Name"<<endl; 

cin>>name; 

cout<<"Enter Address"<<endl; 

cin>>address; 

cout<<"Enter Branch"<<endl; 

cin>>branch; 

cout<<"Enter College"<<endl; 

cin>>college; 

} 
 

void Person :: output() 

{ 

cout<<"Usn :"; 

puts(usn); 

cout<<"Name :"; 

puts(name); 

cout<<"Address :"; 



File Structures Laboratory 17ISL68 

Dept., of ISE. -31- C.I.T. Gubbi-572 216. 

 

 

puts(address); 

cout<<"Branch :"; 

puts(branch); 

cout<<"College :"; 

puts(college); 

} 
 

void Person::pack() 

{ 

strcpy(buffer,usn); strcat(buffer,"|"); 

strcat(buffer,name); strcat(buffer,"|"); 

strcat(buffer,address); strcat(buffer,"|"); 

strcat(buffer,branch); strcat(buffer,"|"); 

strcat(buffer,college); strcat(buffer,"|"); 

while(strlen(buffer)<50) 

strcat(buffer,"*"); 

} 
 

void Person::unpack() 

{ 

char *ptr = buffer; 

while(*ptr!='*') 

{ 

if(*ptr == '|') 

*ptr = '₩0'; 

ptr++; 

} 

ptr = buffer; 

strcpy(usn,ptr); 

 

ptr = ptr +strlen(ptr)+1; 

strcpy(name,ptr); 

 

ptr = ptr +strlen(ptr)+1; 

strcpy(address,ptr); 

 

ptr = ptr +strlen(ptr)+1; 

strcpy(branch,ptr); 
 

ptr = ptr+strlen(ptr)+1; 

strcpy(college,ptr); 

} 
 

 

void Person:: Write() 

{ 

fstream os("p.txt",ios::out|ios::app); 

os.write(buffer,sizeof(buffer)); 

os.close(); 

} 



File Structures Laboratory 17ISL68 

Dept., of ISE. -32- C.I.T. Gubbi-572 216. 

 

 

void Person :: search() 

{ 
int found = 0; 

char key[30]; 

fstream is("p.txt",ios::in); 

 

cout<<"Enter The Usn Of The Record To Be Searched "<<endl; 

cin>>key; 

 

while(!is.eof() && !found) 

{ 

is.read(buffer,sizeof(buffer)); 

unpack(); 

if(strcmp(usn,key) == 0) 

{ 
 

cout<<"Record Found!!! "<<endl; 

output(); 

found = 1; 

} 

} 

if(!found) 

cout<<"Record Not Found!!!"<<endl; 

is.close(); 

} 
 

 

void Person :: modify() 

{ 

char key[30]; 

char del='$'; 

cout<<"Enter The USN Of The Record To Be Modified"<<endl; 

cin>>key; 

 

int found = 0; 

fstream is; 

is.open("p.txt",ios::in|ios::out); 

while(!is.eof()) 

{ 

is.read(buffer,sizeof(buffer)); 

unpack(); 

if(strcmp(usn,key) == 0) 

{ 

int pos=is.tellg(); 

pos=pos-50; 

is.seekg(pos,ios::beg); 

is<<del; 

cout<<"ENTER 

1:NAME₩n2:ADDRESS₩n3:BRANCH₩n4:COLLEGE₩n"; 



File Structures Laboratory 17ISL68 

Dept., of ISE. -33- C.I.T. Gubbi-572 216. 

 

 

cout<<"Enter What to modify ? "; 
int ch; 

cin>>ch; 

switch(ch) 

{ 

 

case 1 : 

cout<<"₩n NAME :"; 

cin>>name; 

break; 

 

case 2: 

cout<<"₩n ADDRESS :"; 

cin>>address; 

break; 

 

case 3: 

cout<<"₩n BRANCH :"; 

cin>>branch; 

break; 

 

case 4: 

cout<<"₩n COLLEGE :"; 

cin>>college; 

break; 
 

default : 

cout<<"wrong choice !!!"; 

exit(0); 

} 

found = 1; 

pack(); 

Write(); 

} 

} 

if(!found) 

cout<<"The Record with the given usn does not exist "<<endl; 

is.close(); 

} 
 

void main() 

{ 

int choice = 1; 

clrscr(); 

Person ob; 

 

while(choice < 4) 

{ 

cout<<"1> Insert A Record "<<endl; 

cout<<"2> Search For A Record "<<endl; 

cout<<"3> Modify A Record "<<endl; 



File Structures Laboratory 17ISL68 

Dept., of ISE. -34- C.I.T. Gubbi-572 216. 

 

 

cout<<"4> Exit "<<endl; 

cin>> choice; 

switch(choice) 

{ 
case 1: ob.input(); 

ob.pack(); 

ob.Write(); 

break; 

 

case 2: ob.search(); 

break; 

 

case 3: ob.modify(); 

break; 

} 

} getch(); 

} 
 

Input/Output : 

 

1> Insert A Record 

2> Search For A Record 

3> Modify A Record 

4> Exit 

 

1 

Enter Usn 

10is020 

Enter Name 

raju 

Enter Address 

gubbi 

Enter Branch 

ise 

Enter College 

Cit 

 

1> Insert A Record 

2> Search For A Record 

3> Modify A Record 

4> Exit 

1 

Enter Usn 

10is021 

Enter Name 

usha 

Enter Address 

tumkur 

Enter Branch 

ise 

Enter College 



File Structures Laboratory 17ISL68 

Dept., of ISE. -35- C.I.T. Gubbi-572 216. 

 

 

Cit 

 

1> Insert A Record 

2> Search For A Record 

3> Modify A Record 

4> Exit 

1 

Enter Usn 

10cs040 

Enter Name 

risha 

Enter Address 

tumkur 

Enter Branch 

ise 

Enter College 

cit 

 

1> Insert A Record 

2> Search For A Record 

3> Modify A Record 

4> Exit 

2 

Enter The Usn Of The Record To Be Searched 

10is021 

Record Found!!! 

Usn :10is021 

Name :usha 

Address :tumkur 

Branch :ise 

College :cit 

 

1> Insert A Record 

2> Search For A Record 

3> Modify A Record 

4> Exit 

3 

Enter The USN Of The Record To Be Modified 

10is020 

ENTER 1:NAME 

2:ADDRESS 

3:BRANCH 

4:COLLEGE 

Enter What to modify ? 2 

ADDRESS :Thirthahalli 

 

1> Insert A Record 

2> Search For A Record 

3> Modify A Record 

4> Exit 

2 



File Structures Laboratory 17ISL68 

Dept., of ISE. -36- C.I.T. Gubbi-572 216. 

 

 

Enter The Usn Of The Record To Be Searched 
10is020 

Record Found!!! 

Usn :10is020 

Name :raju 

Address :Thirthahalli 

Branch :ise 

College :cit 

1> Insert A Record 

2> Search For A Record 

3> Modify A Record 

4> Exit : 4 

 

3. 



File Structures Laboratory 17ISL68 

Dept., of ISE. -37- C.I.T. Gubbi-572 216. 

 

 

Output: 



File Structures Laboratory 17ISL68 

Dept., of ISE. -38- C.I.T. Gubbi-572 216. 

 

 

3. Write a C++ program to read and write student objects with Variable - Length records 

using any suitable record structure. Implement pack ( ), unpack ( ), modify ( ) and search 

( ) methods. 

 

#include<iostream.h> 

#include<stdio.h> 

#include<fstream.h> 

#include<stdlib.h> 

#include<string.h> 

# include<conio.h> 

 

class Person 

{ 

 

 

 

 

 

public: 

 

 

 

 

 

 
}; 

char usn[30]; 

char name[30]; 

char address[30]; 

char branch[30]; 

char college[30]; 

char buffer[100]; 

 

void input(); 

void output(); 

void search(); 

void modify(); 

void pack(); 

void unpack(); 

void Write(); 

 

void Person :: input() 

{ 

cout<<"Enter Usn"<<endl; 

cin>>usn; 

cout<<"Enter Name"<<endl; 

cin>>name; 

cout<<"Enter Address"<<endl; 

cin>>address; 

cout<<"Enter Branch"<<endl; 

cin>>branch; 

cout<<"Enter College"<<endl; 

cin>>college; 

} 
 

void Person :: output() 

{ 

istream& flush(); 

cout<<"Usn :"; 

puts(usn); 

cout<<"Name :"; 

puts(name); 

cout<<"Address :"; 



File Structures Laboratory 17ISL68 

Dept., of ISE. -39- C.I.T. Gubbi-572 216. 

 

 

puts(address); 
cout<<"Branch :"; 

puts(branch); 

cout<<"College :"; 

puts(college); 

} 
 

void Person::pack() 

{ 

strcpy(buffer,usn); strcat(buffer,"|"); 

strcat(buffer,name); strcat(buffer,"|"); 

strcat(buffer,address); strcat(buffer,"|"); 

strcat(buffer,branch); strcat(buffer,"|"); 

strcat(buffer,college); strcat(buffer,"|"); 

strcat(buffer,"#"); 

} 
 

void Person::unpack() 

{ 

char *ptr = buffer; 

while(*ptr!='#') 

{ 

if(*ptr == '|') 

*ptr = '₩0'; 

ptr++; 

} 

ptr = buffer; 

strcpy(usn,ptr); 

 

ptr = ptr +strlen(ptr)+1; 

strcpy(name,ptr); 

 

ptr = ptr +strlen(ptr)+1; 

strcpy(address,ptr); 

 

ptr = ptr +strlen(ptr)+1; 

strcpy(branch,ptr); 
 

ptr = ptr+strlen(ptr)+1; 

strcpy(college,ptr); 

} 
 

void Person:: Write() 

{ 

fstream os("p.txt",ios::out|ios::app); 

os.write(buffer,strlen(buffer)); 

os<<endl; 

os.close(); 

} 

void Person :: search() 

{ 



File Structures Laboratory 17ISL68 

Dept., of ISE. -40- C.I.T. Gubbi-572 216. 

 

 

int found = 0; 
char key[30]; 

fstream is("p.txt",ios::in); 

 

cout<<"Enter The Usn Of The Record To Be Searched "<<endl; 

cin>>key; 

 

while(!is.eof() && !found) 

{ 

is.getline(buffer,'#'); 

unpack(); 

if(strcmp(usn,key) == 0) 

{ 
 

cout<<"Record Found!!! "<<endl; 

output(); 

found = 1; 

} 

} 

if(!found) 

cout<<"Record Not Found!!!"<<endl; 

is.close(); 

} 
 

void Person :: modify() 

{ 

char key[30]; 

char del='$'; 

cout<<"Enter The USN Of The Record To Be Modified"<<endl; 

cin>>key; 

 

int found = 0; 

fstream is; 

is.open("p.txt",ios::in|ios::out); 

while(!is.eof() && !found) 

{ 

is.getline(buffer,'#'); 

int len=strlen(buffer); 

unpack(); 

if(strcmp(usn,key) == 0) 

{ 

int pos=is.tellg(); 

pos=pos-len-2; 

is.seekg(pos,ios::beg); 

is<<del; 

cout<<"ENTER 1:USN₩n2:NAME₩n3:ADDRESS ₩n4:BRANCH 

₩n 

5:COLLEGE₩n"; 

cout<<"Enter What to modify ? "; 

int ch; 

cin>>ch; 



File Structures Laboratory 17ISL68 

Dept., of ISE. -41- C.I.T. Gubbi-572 216. 

 

 

switch(ch) 

{ 
case 1: 

cout<<"USN :"; 

cin>>usn; 

break; 

 

case 2 : 

cout<<"₩n NAME :"; 

cin>>name; 

break; 

 

case 3: 

cout<<"₩n BRANCH :"; 

cin>>branch; 

break; 

 

case 4: 

cout<<"₩n ADDRESS :"; 

cin>>address; 

break; 

 

case 5: 

cout<<"₩n COLLEGE :"; 

cin>>college; 

break; 
 

default : 

cout<<"wrong choice !!!"; 

break; 

} 

found = 1; 

pack(); 

Write(); 

} 

} 

if(!found) 

cout<<"The Record with the given usn does not exist "<<endl; 

is.close(); 

} 
 

void main() 

{ 

int choice = 1; 

clrscr(); 

Person ob; 

//istream& flush(); 

//ostream& flush(); 

//char filename[] = "p.txt"; 

while(choice < 4) 

{ 



File Structures Laboratory 17ISL68 

Dept., of ISE. -42- C.I.T. Gubbi-572 216. 

 

 

cout<<"1> Insert A Record "<<endl; 

cout<<"2> Search For A Record "<<endl; 

cout<<"3> Modify A Record "<<endl; 

cout<<"4> Exit "<<endl; 

cin>> choice; 

switch(choice) 

{ 

case 1: ob.input(); 

ob.pack(); 

ob.Write(); 

break; 

 

case 2: ob.search(); 

break; 

 

case 3: ob.modify(); 

break; 

} 

} getch(); 

} 
 

Input/Output : 

 

1> Insert A Record 

2> Search For A Record 

3> Modify A Record 

4> Exit 

1 

Enter Usn 

10is020 

Enter Name 

raju 

Enter Address 

gubbi 

Enter Branch 

ise 

Enter College 

Cit 

 

1> Insert A Record 

2> Search For A Record 

3> Modify A Record 

4> Exit 

1 

Enter Usn 

10is021 

Enter Name 

usha 

Enter Address 

tumkur 

Enter Branch 



File Structures Laboratory 17ISL68 

Dept., of ISE. -43- C.I.T. Gubbi-572 216. 

 

 

ise 
Enter College 

Cit 

 

1> Insert A Record 

2> Search For A Record 

3> Modify A Record 

4> Exit 

1 

Enter Usn 

10cs040 

Enter Name 

risha 

Enter Address 

tumkur 

Enter Branch 

ise 

Enter College 

cit 

 

1> Insert A Record 

2> Search For A Record 

3> Modify A Record 

4> Exit 

2 

Enter The Usn Of The Record To Be Searched 

10is021 

Record Found!!! 

Usn :10is021 

Name :usha 

Address :tumkur 

Branch :ise 

College :cit 

 

1> Insert A Record 

2> Search For A Record 

3> Modify A Record 

4> Exit 

3 

Enter The USN Of The Record To Be Modified 

10is020 

ENTER 1:NAME 

2:ADDRESS 

3:BRANCH 

4:COLLEGE 

Enter What to modify ? 2 

ADDRESS :Thirthahalli 

 

1> Insert A Record 

2> Search For A Record 

3> Modify A Record 



File Structures Laboratory 17ISL68 

Dept., of ISE. -44- C.I.T. Gubbi-572 216. 

 

 

4> Exit 

2 
Enter The Usn Of The Record To Be Searched 

10is020 

Record Found!!! 

Usn :10is020 

Name :raju 

Address :Thirthahalli 

Branch :ise 

College :cit 

1> Insert A Record 

2> Search For A Record 

3> Modify A Record 

4> Exit 

4. 



File Structures Laboratory 17ISL68 

Dept., of ISE. -45- C.I.T. Gubbi-572 216. 

 

 

Output: 



File Structures Laboratory 17ISL68 

Dept., of ISE. -46- C.I.T. Gubbi-572 216. 

 

 

4. Write a C++ program to write student objects with Variable - Length records using any 
suitable record structure and to read from this file a student record using RRN. 

 

#include<iostream.h> 

#include<stdio.h> 

#include<fstream.h> 

#include<stdlib.h> 

#include<string.h> 

#include<conio.h> 

 

class Person 

{ 

int rrn[10]; 

char usn[30]; 

char name[30]; 

char address[30]; 

char branch[30]; 

char college[30]; 

char buffer[100]; 

int count; 
 

public: 

void input(); 

void output(); 

void searchrrn(); 

void creatrrn(); 

void pack(); 

void unpack(); 

void Write(); 

}; 
 

void Person :: input() 

{ 

cout<<"Enter Usn"<<endl; 

cin>>usn; 

cout<<"Enter Name"<<endl; 

cin>>name; 

cout<<"Enter Address"<<endl; 

cin>>address; 

cout<<"Enter Branch"<<endl; 

cin>>branch; 

cout<<"Enter College"<<endl; 

cin>>college; 

} 
 

void Person :: output() 

{ 

istream& flush(); 

cout<<"Usn :"; 

puts(usn); 

cout<<"Name :"; 



File Structures Laboratory 17ISL68 

Dept., of ISE. -47- C.I.T. Gubbi-572 216. 

 

 

puts(name); 

cout<<"Address :"; 

puts(address); 

cout<<"Branch :"; 

puts(branch); 

cout<<"College :"; 

puts(college); 

} 
 

void Person::pack() 

{ 

strcpy(buffer,usn); strcat(buffer,"|"); 

strcat(buffer,name); strcat(buffer,"|"); 

strcat(buffer,address); strcat(buffer,"|"); 

strcat(buffer,branch); strcat(buffer,"|"); 

strcat(buffer,college); strcat(buffer,"|"); 

strcat(buffer,"#"); 
 

} 

 

void Person::unpack() 

{ 

char *ptr = buffer; 

while(*ptr!='#') 

{ 

if(*ptr == '|') 

*ptr = '₩0'; 

ptr++; 

} 

ptr = buffer; 

strcpy(usn,ptr); 

 

ptr = ptr +strlen(ptr)+1; 

strcpy(name,ptr); 

 

ptr = ptr +strlen(ptr)+1; 

strcpy(address,ptr); 

 

ptr = ptr +strlen(ptr)+1; 

strcpy(branch,ptr); 
 

ptr = ptr+strlen(ptr)+1; 

strcpy(college,ptr); 

} 
 

void Person:: Write() 

{ 

fstream os("p.txt",ios::out|ios::app); 

os.write(buffer,strlen(buffer)); 

os<<endl; 

os.close(); 



File Structures Laboratory 17ISL68 

Dept., of ISE. -48- C.I.T. Gubbi-572 216. 

 

 

} 

 

void Person :: searchrrn() 

{ 

int pos=-1; 

int key; 

cout<<"₩n ENTER THE RRN:"; 

cin>>key; 

 

if(key>count) 

cout<<"₩n FILE IS NOT FOUND"; 

else 

{ 

fstream is("p.txt",ios::in); 

pos=rrn[key]; 

is.seekp(pos,ios::beg); 

is.getline(buffer,'#'); 

unpack(); 

output(); 

cout<<endl; 

cout<<buffer; 

cout<<endl<<endl; 

is.close(); 

} 

} 
 

void Person::creatrrn() 

{ 

fstream fs; 

int pos; 

count=-1; 

fs.open("p.txt",ios::in); 

while(fs) 

{ 

pos=fs.tellg(); 

fs.getline(buffer,'#'); 

if(fs.eof()) 

break; 

rrn[++count]=pos; 

} 

fs.close(); 

} 
 

void main() 

{ 

int choice = 1; 

clrscr(); 

Person ob; 

 

while(choice < 3) 

{ 



File Structures Laboratory 17ISL68 

Dept., of ISE. -49- C.I.T. Gubbi-572 216. 

 

 

cout<<"1> Insert A Record "<<endl; 

cout<<"2> Search For A Record "<<endl; 

cout<<"3> Exit "<<endl; 

cin>> choice; 

switch(choice) 

{ 

case 1: ob.input(); 

ob.pack(); 

ob.Write(); 

break; 

 

case 2: ob.creatrrn(); 

ob.searchrrn(); 

break; 

} 

} getch(); 

} 
 

Input/Output : 

 

1> Insert A Record 

2> Search For A Record 

3> Exit 

1 

Enter Usn 

10cs010 

Enter Name 

shruthi 

Enter Address 

tumkur 

Enter Branch 

cse 

Enter College 

Cit 

 

1> Insert A Record 

2> Search For A Record 

3> Exit 

1 

Enter Usn 

10is025 

Enter Name 

revanth 

Enter Address 

gubbi 

Enter Branch 

ise 

Enter College 

sit 

 

1> Insert A Record 



File Structures Laboratory 17ISL68 

Dept., of ISE. -50- C.I.T. Gubbi-572 216. 

 

 

2> Search For A Record 
3> Exit 

1 

Enter Usn 

10cv030 

Enter Name 

sonali 

Enter Address 

bangaluru 

Enter Branch 

civil 

Enter College 

ssit 

 

1> Insert A Record 

2> Search For A Record 

3> Exit 

2 

 

ENTER THE RRN:1 

Usn :10is025 

Name :revanth 

Address :gubbi 

Branch :ise 

College :sit 

 

1> Insert A Record 

2> Search For A Record 

3> Exit 

2 

ENTER THE RRN:4 

FILE IS NOT FOUND 

1> Insert A Record 

2> Search For A Record 

3> Exit 



File Structures Laboratory 17ISL68 

Dept., of ISE. -51- C.I.T. Gubbi-572 216. 

 

 

Output: 



File Structures Laboratory 17ISL68 

Dept., of ISE. -52- C.I.T. Gubbi-572 216. 

 

 

5. Write a C++ program to implement simple index on primary key for a file of student 
objects. Implement add ( ), search ( ), delete ( ) using the index. 

 

#include<iostream.h> 

#include<stdio.h> 

#include<fstream.h> 

#include<stdlib.h> 

#include<string.h> 

# include<conio.h> 

 

class Person 

{ 

int add[10],count; 

char usnl[10][10]; 

char usn[30]; 

char name[30]; 

char address[30]; 

char branch[30]; 

char college[30]; 

char buffer[100]; 
 

public: 

 

 

 

 

 

 

 
}; 

 
void input(); 

void creatind(); 

void search(); 

void remove(); 

void pack(); 

void sort(); 

int searchusn(char[20]); 

void Write(); 

 

void Person :: input() 

{ 

cout<<"Enter Usn"<<endl; 

cin>>usn; 

cout<<"Enter Name"<<endl; 

cin>>name; 

cout<<"Enter Address"<<endl; 

cin>>address; 

cout<<"Enter Branch"<<endl; 

cin>>branch; 

cout<<"Enter College"<<endl; 

cin>>college; 

} 
 

void Person::pack() 

{ 

strcpy(buffer,usn); strcat(buffer,"|"); 

strcat(buffer,name); strcat(buffer,"|"); 

strcat(buffer,address); strcat(buffer,"|"); 



File Structures Laboratory 17ISL68 

Dept., of ISE. -53- C.I.T. Gubbi-572 216. 

 

 

strcat(buffer,branch); strcat(buffer,"|"); 

strcat(buffer,college); strcat(buffer,"|"); 

strcat(buffer,"#"); 

} 
 

void Person:: Write() 

{ 

fstream os("pt.txt",ios::out|ios::app); 

os.write(buffer,strlen(buffer)); 

os<<endl; 

os.close(); 

} 
 

void Person::creatind() 

{ 

int pos; 

count=-1; 

fstream file; 

file.open("pt.txt",ios::in); 

while(file) 

{ 

pos=file.tellg(); 

file.getline(buffer,'#'); 

if(*buffer=='$') 

continue; 

if(file.eof()) 

break; 
 

char *ptr=buffer; 

while(*ptr!='|') 

ptr++; 

*ptr='₩0'; 

strcpy(usnl[++count],buffer); 

add[count]=pos; 

} 

file.close(); 

sort(); 

} 
 

void Person::sort() 

{ 

 

int i,j,addlist; 

char temp[20]; 

for(i=0;i<=count;i++) 

{ 

for(j=i+1;j<=count;j++) 

{ 

if(strcmp(usnl[i],usnl[j])>0) 

{ 

strcpy(temp,usnl[i]); 



File Structures Laboratory 17ISL68 

Dept., of ISE. -54- C.I.T. Gubbi-572 216. 

 

 

strcpy(usnl[i],usnl[j]); 

strcpy(usnl[j],temp); 

addlist=add[i]; 

add[i]=add[j]; 

add[j]=addlist; 

} 
} 

} 

} 
 

int Person :: searchusn(char key[20]) 

{ 

int low=0,high=count,mid=0,flag=0,pos; 

while(low<=high) 

{ 

mid=(low+high)/2; 

if(strcmp(usnl[mid],key)==0) 

{ 

flag=1; 

break; 

} 

 

 

 

} 

if(flag) 

if(strcmp(usnl[mid],key)>0) 

high=mid-1; 

else 

low=mid+1; 

return mid; 

else 

return -1; 

} 
 

void Person ::remove() 

{ 

char key[30]; 

char del='$'; 

fstream is; 

cout<<"ENTER THE USN :: "<<endl; 

cin>>key; 

int pos=searchusn(key); 

if(pos>=0) 

{ 

 

 

 

 

 

 
} 

else 

is.open("pt.txt",ios::in|ios::out); 

int addl=add[pos]; 

is.seekp(addl,ios::beg); 

is<<del; 

cout<<"Record DELETED !!! "<<endl; 

is.close(); 

count--; 



File Structures Laboratory 17ISL68 

Dept., of ISE. -55- C.I.T. Gubbi-572 216. 

 

 

cout<<"Record Not Found!!! "<<endl; 

} 
 

void Person::search() 

{ 

int pos=0; 

char key[20]; 

fstream file; 

cout<<"₩n ENTER THE KEY TO BE SEARCH : " ; 

cin>>key; 

pos=searchusn(key); 

if(pos>=0) 

{ 

 

 

 

 

 

} 

else 

file.open("pt.txt",ios::in); 

int addl=add[pos]; 

file.seekp(addl,ios::beg); 

file.getline(buffer,'#'); 

cout<<"₩n RECORD FOUND !!! "<<buffer; 

file.close(); 

cout<<"Record Not Found!!! "<<endl; 

} 
 

void main() 

{ 

int choice = 1; 

clrscr(); 

Person ob; 

while(choice < 4) 

{ 

ostream&flush(); 

cout<<"1> Insert A Record "<<endl; 

cout<<"2> Search For A Record "<<endl; 

cout<<"3> Delete A Record "<<endl; 

cout<<"4> Exit "<<endl; 

cin>> choice; 

switch(choice) 

{ 

case 1: ob.input(); 

ob.pack(); 

ob.Write(); 

break; 

 

case 2: ob.creatind(); 

ob.search(); 

break; 

 

case 3: ob.creatind(); 

ob.remove(); 

break; 



File Structures Laboratory 17ISL68 

Dept., of ISE. -56- C.I.T. Gubbi-572 216. 

 

 

} 

} getch(); 
} 

 

Input/Output : 

 

1> Insert A Record 

2> Search For A Record 

3> Delete a record 

4> Exit 

1 

Enter Usn 

10cs010 

Enter Name 

shruthi 

Enter Address 

tumkur 

Enter Branch 

cse 

Enter College 

Cit 

 

1> Insert A Record 

2> Search For A Record 

3> Delete a record 

4> Exit 

1 

Enter Usn 

10is025 

Enter Name 

revanth 

Enter Address 

gubbi 

Enter Branch 

ise 

Enter College 

sit 

 

1> Insert A Record 

2> Search For A Record 

3> Delete a record 

4> Exit 

1 

Enter Usn 

10cv030 

Enter Name 

sonali 

Enter Address 

bangaluru 

Enter Branch 

civil 



File Structures Laboratory 17ISL68 

Dept., of ISE. -57- C.I.T. Gubbi-572 216. 

 

 

Enter College 
ssit 

 

1> Insert A Record 

2> Search For A Record 

3> Delete A Record 

4> Exit 

2 

ENTER THE KEY TO BE SEARCH : 10is025 

RECORD FOUND !!! 

10is025|revanth|gubbi|ise|sit|# 

1> Insert A Record 

2> Search For A Record 

3> Delete A Record 

4> Exit 

3 

ENTER THE USN :: 

10cv030 

Record DELETED !!! 

1> Insert A Record 

2> Search For A Record 

3> Delete A Record 

4> Exit 

2 

 

ENTER THE KEY TO BE SEARCH : 10cv030 

Record Not Found!!! 



File Structures Laboratory 17ISL68 

Dept., of ISE. -58- C.I.T. Gubbi-572 216. 

 

 

Output: 



File Structures Laboratory 17ISL68 

Dept., of ISE. -59- C.I.T. Gubbi-572 216. 

 

 

6. Write a C++ program to implement index on secondary key, the name, for a file of 
student objects. Implement add ( ), search ( ), delete ( ) using the secondary index. 

 

#include<iostream.h> 

#include<stdio.h> 

#include<fstream.h> 

#include<stdlib.h> 

#include<string.h> 

# include<conio.h> 

 

class Person 

{ 

 

 

 

 

 

 

 
public: 

 

 

 

 

 

 

 

 

 

 
}; 

int add[10],count; 

char sk[10][10]; 

char usn[30]; 

char name[30]; 

char address[30]; 

char branch[30]; 

char college[30]; 

char buffer[100]; 

 

void input(); 

void creatind(); 

void search(); 

void remove(); 

void delfile(int); 

void pack(); 

 

void sort(); 

void readf(int); 

int searchn(char[20]); 

void Write(); 

 

void Person :: input() 

{ 

cout<<"Enter Usn"<<endl; 

cin>>usn; 

cout<<"Enter Name"<<endl; 

cin>>name; 

cout<<"Enter Address"<<endl; 

cin>>address; 

cout<<"Enter Branch"<<endl; 

cin>>branch; 

cout<<"Enter College"<<endl; 

cin>>college; 

} 



File Structures Laboratory 17ISL68 

Dept., of ISE. -60- C.I.T. Gubbi-572 216. 

 

 

void Person::pack() 

{ 
strcpy(buffer,usn); strcat(buffer,"|"); 

strcat(buffer,name); strcat(buffer,"|"); 

strcat(buffer,address); strcat(buffer,"|"); 

strcat(buffer,branch); strcat(buffer,"|"); 

strcat(buffer,college); strcat(buffer,"|"); 

strcat(buffer,"#"); 

} 

void Person:: Write() 

{ 

fstream os("p.txt",ios::in | ios::app); 

os.write(buffer,strlen(buffer)); 

os<<endl; 

os.close(); 

creatind(); 

} 
 

void Person::creatind() 

{ 

int pos; 

count=-1; 

fstream file; 

file.open("p.txt",ios::in); 

while(file) 

{ 

pos=file.tellg(); 

file.getline(buffer,'#'); 

if(*buffer=='$') 

continue; 

if(file.eof()) 

break; 

 

char *ptr=buffer; 

while(*ptr!='#') 

{ 

if(*ptr=='|') 

*ptr='₩0'; 

ptr++; 

} 

ptr=buffer; 

ptr=ptr+strlen(ptr)+1; 

strcpy(sk[++count],ptr); 

add[count]=pos; 

} 

file.close(); 

sort(); 

} 



File Structures Laboratory 17ISL68 

Dept., of ISE. -61- C.I.T. Gubbi-572 216. 

 

 

void Person::sort() 

{ 
int i,j,addlist; 

char temp[20]; 

for(i=0;i<=count;i++) 

{ 

for(j=i+1;j<=count;j++) 

{ 

if(strcmp(sk[i],sk[j])>0) 

{ 

strcpy(temp,sk[i]); 

strcpy(sk[i],sk[j]); 

strcpy(sk[j],temp); 

addlist=add[i]; 

add[i]=add[j]; 

add[j]=addlist; 

} 

} 

} 

} 

int Person :: searchn(char key[20]) 

{ 

int low=0,high=count,mid=0,flag=0; 

while(low<=high) 

{ 

mid=(low+high)/2; 

if(strcmp(sk[mid],key)==0) 

{ 

flag=1; 

break; 

} 

 

 

 

} 

if(flag) 

if(strcmp(key,sk[mid])<0) 

high=mid-1; 

else 

low=mid+1; 

return mid; 

else 

return -1; 

} 
 

void Person::delfile(int pos) 

{ 

char del='$'; 

int i; 

fstream is; 

if(pos>=0) 

{ 

is.open("p.txt",ios::in|ios::out); 

int addl=add[pos]; 



File Structures Laboratory 17ISL68 

Dept., of ISE. -62- C.I.T. Gubbi-572 216. 

 

 

is.seekp(addl,ios::beg); 
is<<del; 

cout<<"Record DELETED !!! "<<endl; 

is.close(); 
 

} 

} 

void Person ::remove() 

{ 

char key[30]; 

 

fstream is; 

cout<<"ENTER THE NAME :: "<<endl; 

cin>>key; 

int pos=searchn(key); 

if(pos>=0) 

{ 

readf(pos); 

delfile(pos); 

int t=pos; 

while(strcmp(sk[++t],key)==0 && t<=count) 

{ 

readf(t); 

delfile(t); 

} 

t=pos; 

while(strcmp(sk[--t],key)==0) 

{ 

readf(t); 

delfile(t); 

} 

} 

else 

cout<<"Record Not Found!!! "<<endl; 

} 
 

void Person::readf(int pos) 

{ 

fstream file; 

file.open("p.txt",ios::in); 

int addl=add[pos]; 

file.seekp(addl,ios::beg); 

file.getline(buffer,'#'); 

cout<<"₩n RECORD FOUND !!! "<<buffer; 

file.close(); 

} 



File Structures Laboratory 17ISL68 

Dept., of ISE. -63- C.I.T. Gubbi-572 216. 

 

 

void Person::search() 

{ 
int pos=0,t; 

char key[20]; 

fstream file; 

cout<<"₩n ENTER THE NAME TO BE SEARCH : " ; 

cin>>key; 

pos=searchn(key); 

if(pos>=0) 

{ 

readf(pos); 

t=pos; 

while(strcmp(sk[++t],key)==0 && t<=count) 

readf(t); 
 

 

 

 
} 

else 

t=pos; 

while(strcmp(sk[--t],key)==0 && t<=count) 

readf(t); 

cout<<"Record Not Found!!! "<<endl; 

} 

void main() 

{ 

int choice = 1; 

clrscr(); 

Person ob; 

while(choice < 4) 

{ 

ostream&flush(); 

cout<<"1> Insert A Record "<<endl; 

cout<<"2> Search For A Record "<<endl; 

cout<<"3> Delete A Record "<<endl; 

cout<<"4> Exit "<<endl; 

cin>> choice; 

switch(choice) 

{ 

case 1: ob.input(); 

ob.pack(); 

ob.Write(); 

break; 
 

case 2:  
ob.creatind(); 

ob.search(); 

break; 
 

case 3:  
ob.creatind(); 

ob.remove(); 

break; 



File Structures Laboratory 17ISL68 

Dept., of ISE. -64- C.I.T. Gubbi-572 216. 

 

 

} 

} getch(); 
} 

 

Input/Output : 

 

1> Insert A Record 

2> Search For A Record 

3> Delete a record 

4> Exit 

1 

Enter Usn 

10cs010 

Enter Name 

shruthi 

Enter Address 

tumkur 

Enter Branch 

cse 

Enter College 

Cit 

 

1> Insert A Record 

2> Search For A Record 

3> Delete a record 

4> Exit 

1 

Enter Usn 

10is025 

Enter Name 

revanth 

Enter Address 

gubbi 

Enter Branch 

ise 

Enter College 

sit 

 

1> Insert A Record 

2> Search For A Record 

3> Delete a record 

4> Exit 

1 

Enter Usn 

10cv030 

Enter Name 

sonali 

Enter Address 

bangaluru 

Enter Branch 

civil 



File Structures Laboratory 17ISL68 

Dept., of ISE. -65- C.I.T. Gubbi-572 216. 

 

 

Enter College 
ssit 

 

1> Insert A Record 

2> Search For A Record 

3> Delete a record 

4> Exit 

1 

Enter Usn 

10ec040 

Enter Name 

revanth 

Enter Address 

shimoga 

Enter Branch 

ece 

Enter College 

cit 

 

1> Insert A Record 

2> Search For A Record 

3> Delete A Record 

4> Exit 

2 

 

ENTER THE NAME TO BE SEARCH : revanth 

 

RECORD FOUND !!! 10ec040|revanth|shimoga|ece|cit|# 

RECORD FOUND !!! 10is025|revanth|gubbi|ise|sit|# 

1> Insert A Record 

2> Search For A Record 

3> Delete A Record 

4> Exit 

3 

ENTER THE NAME :: 

revanth 

 

RECORD FOUND !!! 10ec040|revanth|shimoga|ece|cit|# Record DELETED !!! 

RECORD FOUND !!! 10is025|revanth|gubbi|ise|sit|# Record DELETED !!! 

1> Insert A Record 

2> Search For A Record 

3> Delete A Record 

4> Exit 



File Structures Laboratory 17ISL68 

Dept., of ISE. -66- C.I.T. Gubbi-572 216. 

 

 

Output: 



File Structures Laboratory 17ISL68 

Dept., of ISE. -67- C.I.T. Gubbi-572 216. 

 

 

 

7. Write a C++ program to read two lists of names and then match the names in the two 

lists using Cosequential Match based on a single loop. Output the names common to both 

the lists. 

 

#include<iostream.h> 

#include<conio.h> 

#include<fstream.h> 

#include<string.h> 

#include<stdio.h> 

 

class coseq 

{ 

char list1[20][20],list2[20][20]; 

int count1,count2; 
 

public: 

void load(); 

void sort(); 

coseq(); 

void match(); 

}; 
 

coseq::coseq() 

{ 

int n; 

char name[20]; 

fstream fs; 

fs.open("name1.txt",ios::out|ios::app); 

cout<<"Enter hoW many name for list one: "; 

cin>>n; 

for(int i=0;i<n;i++) 

{ 

fflush(stdin); 

cin>>name; 

fs<<name<<endl; 

} 

fs.close(); 

 

fs.open("name2.txt",ios::out|ios::app); 

cout<<"Enter hoW many name for list two: "; 

cin>>n; 

for(i=0;i<n;i++) 

{ 

fflush(stdin); 

cin>>name; 

fs<<name<<endl; 

} 

fs.close(); 

} 



File Structures Laboratory 17ISL68 

Dept., of ISE. -68- C.I.T. Gubbi-572 216. 

 

 

void coseq::load() 

{ 
fstream file; 

char name[20]; 

count1=-1; 

count2=-1; 

file.open("name1.txt",ios::in); 

while(!file.eof()) 

{ 

file.getline(name,'₩n'); 

strcpy(list1[++count1],name); 

} 

file.close(); 

 

file.open("name2.txt",ios::in); 

while(!file.eof()) 

{ 

file.getline(name,'₩n'); 

strcpy(list2[++count2],name); 

} 

file.close(); 

} 
 

void coseq::sort() 

{ 

int i,j; 

char temp[20]; 

for(i=0;i<=count1;i++) 

{ 

for(j=i+1;j<=count1;j++) 

{ 

 

if(strcmp(list1[i],list1[j])>0) 

{ 

strcpy(temp,list1[i]); 

strcpy(list1[i],list1[j]); 

strcpy(list1[j],temp); 

} 

} 

} 

for(i=0;i<=count2;i++) 

{ 

for(j=i+1;j<=count2;j++) 

{ 

if(strcmp(list2[i],list2[j])>0) 

{ 

strcpy(temp,list2[i]); 

strcpy(list2[i],list2[j]); 

strcpy(list2[j],temp); 

} 

} 



File Structures Laboratory 17ISL68 

Dept., of ISE. -69- C.I.T. Gubbi-572 216. 

 

 

} 

} 
 

void coseq::match() 

{ 

int i=0,j=0; 

cout.flush(); 

while(i<=count1 &&j<=count2) 

{ 

if(strcmp(list1[i],list2[j])==0) 

{ 

cout<<endl<<list1[i]; 

i++; 

j++; 

} 

if(strcmp(list1[i],list2[j])<0) 

i++; 

if(strcmp(list1[i],list2[j])>0) 

j++; 

} 

} 

void main() 

{ clrscr(); 

coseq c; 

c.load(); 

c.sort(); 

cout<<”₩nList of Names common in both list are : ”; 

c.match(); 

getch(); 

} 

 

Input/Output : 

Enter hoW many name for list one: 4 

ramu 

risha 

raj 

revanth 

 

Enter hoW many name for list two: 5 

arun 

savanth 

revanth 

risha 

raj 

List of Names common in both list are : 

raj 

revanth 

risha 



File Structures Laboratory 17ISL68 

Dept., of ISE. -70- C.I.T. Gubbi-572 216. 

 

 

Output: 



File Structures Laboratory 17ISL68 

Dept., of ISE. -71- C.I.T. Gubbi-572 216. 

 

 

 

8. Write a C++ program to read k Lists of names and merge them using k-way merge 

algorithm with k = 8. 

 

#include<iostream.h> 

#include<stdio.h> 

#include<conio.h> 

#include<fstream.h> 

#include<stdlib.h> 

#include<string.h> 

 

class Merge 

{ 

 

 

 

 

public: 

 

 

 

 

 

}; 

char list[9][30][20]; 

char outputlist[270][20]; 

int k,count; 

int size[9]; 

int index[9]; 

 

void sort(char l[30][20],int s); 

void merge(); 

void read(char temp[30]); 

void load(char filename[20]); 

char* minValue(); 

void display(); 

 

void Merge::read(char temp[30]) 

{ 

int n; 

char name[20]; 

fstream fs; 

fs.open(temp,ios::out|ios::app); 

cout<<"Enter hoW many name for list one: "; 

cin>>n; 

for(int i=0;i<n;i++) 

{ 

fflush(stdin); 

cin>>name; 

fs<<name<<endl; 

} 

fs.close(); 

} 
 

void Merge :: load(char filename[20]) 

{ 

k = 8; 

char temp[30],buf[10]; 

fstream file; 

memset(size,0,sizeof(size)); 

memset(index,0,sizeof(index)); 



File Structures Laboratory 17ISL68 

Dept., of ISE. -72- C.I.T. Gubbi-572 216. 

 

 

for(int i=1; i<=k;i++) 

{ 
strcpy(temp,filename); 

sprintf(buf,"%d",i); 

strcat(temp,buf); 

strcat(temp,".txt"); 

read(temp); 

file.open(temp,ios::in); 

while(!file.eof()) 

{ 

file.getline(temp,'₩n'); 

if(file.eof()) 

break; 

strcpy(list[i][size[i]],temp); 

size[i]++; 

} 

file.close(); 

sort(list[i],size[i]); 

} 

} 
 

void Merge :: merge() 

{ 

count = 0; 

char *value = minValue(); 

while(value != NULL) 

{ 

for(int i = 1; i<= k; i++) 

{ 

if(index[i]>= size[i]) 

continue; 
 

if(strcmp(value,list[i][index[i]]) == 0) 

index[i]++; 

} 

strcpy(outputlist[count],value); 

count++; 

value = minValue(); 

} 

} 
 

char* Merge :: minValue() 
 

{ 

int t = 1; 

char *value = NULL; 

 

while(index[t] >= size[t] && t <= k) 

t++; 

 

if( t <= k) 



File Structures Laboratory 17ISL68 

Dept., of ISE. -73- C.I.T. Gubbi-572 216. 

 

 

{ 
value = list[t][index[t]]; 

for(int i = t+1; i <= k; i++) 

if(strcmp(value,list[i][index[i]]) > 0 && index[i]<size[i]) 

value = list[i][index[i]]; 

} 

return value; 

} 
 

void Merge :: sort(char l[30][20],int s) 

{ 

char temp[20]; 

for(int i = 0; i < s; i++) 

{ 

for(int j=i+1; j<s;j++) 

{ 

if(strcmp(l[i],l[j]) > 0) 

{ 

strcpy(temp,l[i]); 

strcpy(l[i],l[j]); 

strcpy(l[j],temp); 
 

} 

} 

} 

} 
 

void Merge ::display() 

{ 

for(int i= 0; i < count; i++) 

cout<<outputlist[i]<<" "; 

} 
 

void main() 

{ 

Merge m; 

char filename[]="list"; 

clrscr(); 

m.load(filename); 

m.merge(); 

cout<<”₩nNames in sorted order is :”; 

m.display(); 

getch(); 

} 



File Structures Laboratory 17ISL68 

Dept., of ISE. -74- C.I.T. Gubbi-572 216. 

 

 

Input/Output 

Enter hoW many name for list : 2 

MMM 

NNN 

Enter hoW many name for list : 3 

CCC 

DDD 

AAA 

Enter hoW many name for list : 1 

ZZZ 

Enter hoW many name for list : 2 

WWW 

AAA 

Enter hoW many name for list : 3 

KKK 

MMM 

NNN 

Enter how many name for list : 2 

RRR 

SSS 

Enter how many names for list : 2 

AAA 

OOO 

Enter how many names for list : 2 

KK 

KKKK 

Names in sorted order is : 

AAA CCC DDD KK KKK KKKK MMM NNN   OOO   RRR   SSS   WWW 

ZZZ 



File Structures Laboratory 17ISL68 

Dept., of ISE. -75- C.I.T. Gubbi-572 216. 

 

 

Output: 



File Structures Laboratory 17ISL68 

Dept., of ISE. -76- C.I.T. Gubbi-572 216. 

 

 

 

VIVA QUESTIONS 

 
1. What is File Structure? 

2. What is a File? 

3. What is a field? 

4. What is a Record? 

5. What is fixed length record? 

6. What is RRN? 

7. What is Variable length record? 

8. What are the different modes of opening a file? 

9. What is ifstream()? 

10. What is ofstream()? 

11. What is the difference between read() and getline()? 

12. How to close a file? What happens if a file is not closed? 

13. What is Hashing? What is its use? 

14. Explain any one collision resolution technique. 

15. What is Btree? What is B+tree? 

16. Differentiate between Logical and Physical file 

17. What is the use of seekg() and seekp()? 

18. Explain the different way of write data to a file. 

19. Explain the different way of write data to a file. 

20. What is meant by Indexing? 

21. What is multilevel indexing? 

22. What is File descriptor? 

23. What is Fragmentation? What is internal fragmentation? 

24. What is DMA? 

25. What is a delimeter? 

26. Define direct access. 

27. Define sequential access. 

28. What is the need of packing the record before writing into the file? 

29. Explain ios::trunk and ios::nocreate 

30. What is the use of End-of-file (EOF)? 

31. What are stdin, stdout and stderr? 



File Structures Laboratory 17ISL68 

Dept., of ISE. -77- C.I.T. Gubbi-572 216. 

 

 

32. What is Fragmentation? 

33. What is data compression? 

34. What are the properties of B tree? 

35. How do we delete fixed length records? 

36. How can we reclaim the deleted space dynamically? 

37. What are the advantages and disadvantages of indexes that are too large to hold in 

memory? 

38. What is an AVL tree? 

39. H M L B Q S T N A Z P E G C V J K D I U Show B tree creation, insertion, 

splitting, deletion, merging and redistribution. 

40. What is memset() ? Explain its parameters. 

41. What is sprintf() ? Explain its parameters. 

42. What is the use of tellg() and tellp()? 

43. What is Boeing tree? 


	DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING
	(2021-22)
	VI Semester ISE
	Batch: Section:
	DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING
	[As per Choice Based Credit System (CBCS) scheme]
	Total Number of Lecture Hours: 40 Exam Hours: 03

	Course objectives:
	Description (If any):
	Lab Experiments:
	PART A

	Part B --- Mini project:
	Course outcomes:
	Conduction of Practical Examination:

	File Structures
	Data Representation in Memory
	Record:
	Field :
	Stream of bytes:
	FredFlintstone4444 Granite PlaceRockvilleMD00001LilyMunster1313 Mockingbird LaneHollywoodCA90210

	A Stream File
	2. Member function open().
	open (filename, mode);

	Closing a file
	Text files
	Checking state flags
	get and put stream pointers
	tellg() and tellp()
	seekg() and seekp()

	Buffers and Synchronization
	1. Delineation of Records in a File
	1. variable length record
	2. delimited record
	3. delimiter


	Delineation of Fields in a Record
	Index :
	Reference field:
	Simple index
	Direct access
	Relative record number
	Primary key

	Secondary key
	Secondary index
	Cosequential Algorithms
	Match :
	Merge

	Hashing
	Hashing
	Randomize
	Uniform distribution
	Modulus
	123456789 % 11 = 5

	Collision Resolution by Progressive Overflow Progressive overflow:
	Storing more than One Record per Address: Buckets Bucket :


	Introduction to Btrees
	The Structure of B-Trees
	Height of B-Trees
	B-Tree-Search(x, k)
	B-Tree-Create(T)
	B-Tree-Split-Child(x, i, y)
	B-Tree-Insert(T, k)
	B-Tree-Insert-Nonfull(x, k)
	B-Tree-Delete
	Sample B-Tree
	Inserting Key 33 into a B-Tree (w/ Split)

	Input/Output :
	Input/Output :

	Output:
	Input/Output :

	Output: (1)
	Input/Output :

	Output: (2)
	Input/Output :

	Output: (3)
	Input/Output :

	Output: (4)
	Input/Output :

	Output: (5)
	Input/Output

	Output: (6)
	VIVA QUESTIONS



