
Channabasaveshwara Institute of Technology
(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi)

(NAAC Accredited & ISO 9001:2015 Certified Institution)
NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka.

Computer Graphics
Laboratory with Mini

Project -18CSL67

Department of Computer Science & Engineering

VI Semester

COMPUTER GRAPHICS LABORATORY WITH MINI PROJECT

(Effective from the academic year 2018 -2019)

SEMESTER – VI
Course Code 18CSL67 CIE Marks 40
Number of Contact Hours/Week 0:2:2 SEE Marks 60
Total Number of Lab Contact Hours 36 Exam Hours 03

 Credits – 2

Course Learning Objectives: This course (18CSL67) will enable students to:
• Demonstrate simple algorithms using OpenGL Graphics Primitives and attributes.
• Implementation of line drawing and clipping algorithms using OpenGL functions

• Design and implementation of algorithms Geometric transformations on both 2D and 3D objects.
Descriptions (if any): --

Installation procedure of the required software must be demonstrated, carried out in groups

and documented in the journal.
Programs List:

PART A

Design, develop, and implement the following programs using OpenGL API

1. Implement Brenham’s line drawing algorithm for all types of slope.
Refer:Text-1: Chapter 3.5
Refer:Text-2: Chapter 8

2. Create and rotate a triangle about the origin and a fixed point.
Refer:Text-1: Chapter 5-4

3. Draw a colour cube and spin it using OpenGL transformation matrices.
Refer:Text-2: Modelling a Coloured Cube

4. Draw a color cube and allow the user to move the camera suitably to experiment with
perspective viewing.
Refer:Text-2: Topic: Positioning of Camera

5. Clip a lines using Cohen-Sutherland algorithm
Refer:Text-1: Chapter 6.7

Refer:Text-2: Chapter 8

6. To draw a simple shaded scene consisting of a tea pot on a table. Define suitably the
position and properties of the light source along with the properties of the surfaces of the
solid object used in the scene.
Refer:Text-2: Topic: Lighting and Shading

7. Design, develop and implement recursively subdivide a tetrahedron to form 3D sierpinski
gasket. The number of recursive steps is to be specified by the user.
Refer: Text-2: Topic: sierpinski gasket.

8. Develop a menu driven program to animate a flag using Bezier Curve algorithm
Refer: Text-1: Chapter 8-10

9. Develop a menu driven program to fill the polygon using scan line algorithm

PART B MINI PROJECT

Student should develop mini project on the topics mentioned below or similar applications using Open
GL API. Consider all types of attributes like color, thickness, styles, font, background, speed etc., while
doing mini project.
 (During the practical exam: the students should demonstrate and answer Viva-Voce)
Sample Topics:

Simulation of concepts of OS, Data structures, algorithms etc.

Laboratory Outcomes: The student should be able to:
• Apply the concepts of computer graphics

• Implement computer graphics applications using OpenGL
• Animate real world problems using OpenGL

Conduct of Practical Examination:

• Experiment distribution
o For laboratories having only one part: Students are allowed to pick one experiment from

the lot with equal opportunity.
o For laboratories having PART A and PART B: Students are allowed to pick one

experiment from PART A and one experiment from PART B, with equal opportunity.
• Change of experiment is allowed only once and marks allotted for procedure to be made zero of

the changed part only.
• Marks Distribution (Courseed to change in accoradance with university regulations)

o) For laboratories having only one part – Procedure + Execution + Viva-Voce: 15+70+15 =
100 Marks

p) For laboratories having PART A and PART B
i. Part A – Procedure + Execution + Viva = 6 + 28 + 6 = 40 Marks

ii. Part B – Procedure + Execution + Viva = 9 + 42 + 9 = 60 Marks

 Table of Contents

Sl. No. Particulars
Page No.

1 Introduction to OpenGL 1-10

2 Sample Programs 11-17

3 Lab Programs 18-44

4 Viva Questions 45-49

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 1

Introduction to OpenGL

OpenGL is a low-level graphics library specification. It makes available to the

programmer a small set of geometric primitives - points, lines, polygons, images, and

bitmaps. OpenGL provides a set of commands that allow the specification of geometric

objects in two or three dimensions, using the provided primitives, together with commands

that control how these objects are rendered (drawn).

Since OpenGL drawing commands are limited to those that generate simple geometric

primitives (points, lines, and polygons), the OpenGL Utility Toolkit (GLUT) has been

created to aid in the development of more complicated three-dimensional objects such as a

sphere, a torus, and even a teapot. GLUT may not be satisfactory for full-featured OpenGL

applications, but it is a useful starting point for learning OpenGL.

GLUT is designed to fill the need for a window system independent programming

interface for OpenGL programs. The interface is designed to be simple yet still meet the

needs of useful OpenGL programs. Removing window system operations from OpenGL is a

sound decision because it allows the OpenGL graphics system to be retargeted to various

systems including powerful but expensive graphics workstations as well as mass-production

graphics systems like video games, set-top boxes for interactive television, and PCs.

GLUT simplifies the implementation of programs using OpenGL rendering. The

GLUT application programming interface (API) requires very few routines to display a

graphics scene rendered using OpenGL. The GLUT routines also take relatively few

parameters.

1.1 Rendering Pipeline

Most implementations of OpenGL have a similar order of operations, a series of

processing stages called the OpenGL rendering pipeline. Although this is not a strict rule of

how OpenGL is implemented, it provides a reliable guide for predicting what OpenGL will

do. Geometric data (vertices, line, and polygons) follow a path through the row of boxes that

includes evaluators and per-vertex operations, while pixel data (pixels, images and bitmaps)

are treated differently for part of the process. Both types of data undergo the same final step

(rasterization) before the final pixel data is written to the frame buffer.

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 2

Display Lists: All data, whether it describes geometry or pixels, can be saved in a display list

for current or later use. (The alternative to retaining data in a display list is processing the

data immediately-known as immediate mode.) When a display list is executed, the retained

data is sent from the display list just as if it were sent by the application in immediate mode.

Evaluators: All geometric primitives are eventually described by vertices. Evaluators

provide a method for deriving the vertices used to represent the surface from the control

points. The method is a polynomial mapping, which can produce surface normal, colors, and

spatial coordinate values from the control points.

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 3

Per-Vertex and Primitive Assembly: For vertex data, the next step converts the vertices

into primitives. Some types of vertex data are transformed by 4x4 floating-point matrices.

Spatial coordinates are projected from a position in the 3D world to a position on your screen.

In some cases, this is followed by perspective division, which makes distant geometric

objects appear smaller than closer objects. Then view port and depth operations are applied.

The results at this point are geometric primitives, which are transformed with related color

and depth values and guidelines for the rasterization step.

Pixel Operations: While geometric data takes one path through the OpenGL rendering

pipeline, pixel data takes a different route. Pixels from an array in system memory are first

unpacked form one of a variety of formats into the proper number of components. Next the

data is scaled, biased, processed by a pixel map, and sent to the rasterization step.

Rasterization: Rasterization is the conversion of both geometric and pixel data into

fragments. Each fragment square corresponds to a pixel in the frame buffer. Line width, point

size, shading model, and coverage calculations to support antialiasing are taken it to

consideration as vertices are connected into lines or the interior pixels are calculated for a

filled polygon. Color and depth values are assigned for each fragment square. The processed

fragment is then drawn into the appropriate buffer, where it has finally advanced to be a pixel

and achieved its final resting place.

1.2 Libraries

OpenGL provides a powerful but primitive set of rendering command, and all higher-level

drawing must be done in terms of these commands. There are several libraries that allow you

to simplify your programming tasks, including the following:

 OpenGL Utility Library (GLU) contains several routines that use lower-level OpenGL

commands to perform such tasks as setting up matrices for specific viewing orientations

and projections and rendering surfaces.

 OpenGL Utility Toolkit (GLUT) is a window-system-independent toolkit, written by

Mark Kilgard, to hide the complexities of differing window APIs.

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 4

1.3 Include Files

For all OpenGL applications, you want to include the gl.h header file in every file. Almost all

OpenGL applications use GLU, the aforementioned OpenGL Utility Library, which also

requires inclusion of the glu.h header file. So almost every OpenGL source file begins with:

#include<GL/gl.h>

#include <GL/glu.h>

If you are using the OpenGL Utility Toolkit (GLUT) for managing your window manager

tasks, you should include:

#include <GL/glut.h>

Note that glut.h guarantees that gl.h and glu.h are properly included for you so including

these three files is redundant. To make your GLUT programs portable, include glut.h and do

not include gl.h or glu.h explicitly.

1.4 Setting up Compilers

 Windows Using MS Visual C++

Installing GLUT

 Most of the following files (ie. OpenGL and GLU) will already be present if you have

installed MS Visual C++ v5.0 or later. The following GLUT files will need to be

copied into the specified directories.

1. To install:

 right-click each link

 choose Save Link As...

 accept the default name (just click Save)

 libraries (place in the lib\ subdirectory of Visual C++)

 opengl32.lib

 glu32.lib

 glut32.lib

 include files (place in the include\GL\ subdirectory of Visual C++)

 gl.h

ftp://ftp.csis.gvsu.edu/wolffe/graphics/lib/opengl32.lib
ftp://ftp.csis.gvsu.edu/wolffe/graphics/lib/glu32.lib
ftp://ftp.csis.gvsu.edu/wolffe/graphics/lib/glut32.lib
ftp://ftp.csis.gvsu.edu/wolffe/graphics/include/gl.h

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 5

 glu.h

 glut.h

 dynamically-linked libraries (place in the \Windows\System subdirectory

 opengl32.dll

 glu32.dll

 glut32.dll

Compiling OpenGL/GLUT Programs

1. Create a new project:

o choose File | New from the File Menu

o select the Projects tab

o choose Win32 Console Application

o fill in your Project name

2. Designate library files for the linker to use:

o choose Project | Settings from the File Menu

o under Oject/library modules: enter "opengl32.lib glu32.lib glut32.lib"

3. Add/Create files to the project:

o choose Project | Add to Project | Files from the File menu

o add the required program files

4. Build and Execute

1.5 Initialization

The first thing we need to do is call the glutInit() procedure. It should be called before

any other GLUT routine because it initializes the GLUT library. The parameters to glutInit()

should be the same as those to main(), specifically main(int argc, char** argv) and

glutInit(&argc, argv), where argcp is a pointer to the program's unmodified argc variable

from main. Upon return, the value pointed to by argcp will be updated, and argv is the

program's unmodified argv variable from main. Like argcp, the data for argv will be updated.

 The next thing we need to do is call the glutInitDisplayMode() procedure to specify

the display mode for a window. You must first decide whether you want to use an RGBA

(GLUT_RGBA) or color-index (GLUT_INDEX) color model. The RGBA mode stores its

color buffers as red, green, blue, and alpha color components. The forth color component,

alpha, corresponds to the notion of opacity. An alpha value of 1.0 implies complete opacity,

ftp://ftp.csis.gvsu.edu/wolffe/graphics/include/glu.h
ftp://ftp.csis.gvsu.edu/wolffe/graphics/include/glut.h
ftp://ftp.csis.gvsu.edu/wolffe/graphics/dll/opengl32.dll
ftp://ftp.csis.gvsu.edu/wolffe/graphics/dll/glu32.dll
ftp://ftp.csis.gvsu.edu/wolffe/graphics/dll/glut32.dll
http://cs.uccs.edu/~semwal/man.html#glutInit
http://cs.uccs.edu/~semwal/man.html#glutInit
http://cs.uccs.edu/~semwal/man.html#glutInit
http://cs.uccs.edu/~semwal/man.html#glutInitDisplayMode

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 6

and an alpha value of 0.0 complete transparancy. Color-index mode, in contrast, stores color

buffers in indices. Your decision on color mode should be based on hardware availability and

what you application requires. More colors can usually be simultaneously represented with

RGBA mode than with color-index mode. And for special effects, such as shading, lighting,

and fog, RGBA mode provides more flexibility. In general, use RGBA mode whenever

possible. RGBA mode is the default.

 Another decision you need to make when setting up the display mode is whether you

want to use single buffering (GLUT_SINGLE) or double buffering (GLUT_DOUBLE).

Applications that use both front and back color buffers are double-buffered. Smooth

animation is accomplished by rendering into only the back buffer (which isn't displayed),

then causing the front and back buffers to be swapped. If you aren't using animation, stick

with single buffering, which is the default.

 Finally, you must decide if you want to use a depth buffer (GLUT_DEPTH), a stencil

buffer (GLUT_STENCIL) and/or an accumulation buffer (GLUT_ACCUM). The depth

buffer stores a depth value for each pixel. By using a "depth test", the depth buffer can be

used to display objects with a smaller depth value in front of objects with a larger depth

value. The second buffer, the stencil buffer is used to restrict drawing to certain portions of

the screen, just as a cardboard stencil can be used with a can of spray paint to make a printed

image. Finally, the accumulation buffer is used for accumulating a series of images into a

final composed image. None of these are default buffers.

 We need to create the characteristics of our window. A call to glutInitWindowSize()

will be used to specify the size, in pixels, of your initial window. The arguments indicate the

height and width (in pixels) of the requested window. Similarly, glutInitWindowPosition() is

used to specify the screen location for the upper-left corner of your initial window. The

arguments, x and y, indicate the location of the window relative to the entire display.

1.6 Creating a Window

To actually create a window, the with the previously set characteristics (display mode,

size, location, etc), the programmer uses the glutCreateWindow() command. The command

takes a string as a parameter which may appear in the title bar if the window system you are

using supports it. The window is not actually displayed until the glutMainLoop() is entered.

http://cs.uccs.edu/~semwal/man.html#glutInitWindowSize
http://cs.uccs.edu/~semwal/man.html#glutInitWindowPosition
http://cs.uccs.edu/~semwal/man.html#glutCreateWindow
http://cs.uccs.edu/~semwal/man.html#glutMainLoop

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 7

1.7 Display Function

The glutDisplayFunc() procedure is the first and most important event callback

function you will see. A callback function is one where a programmer-specified routine can

be registered to be called in response to a specific type of event. For example, the argument

of glutDisplayFunc() is the function that is called whenever GLUT determines that the

contents of the window needs to be redisplayed. Therefore, you should put all the routines

that you need to draw a scene in this display callback function.

1.8 Reshape Function

The glutReshapeFunc() is a callback function that specifies the function that is called

whenever the window is resized or moved. Typically, the function that is called when needed

by the reshape function displays the window to the new size and redefines the viewing

characteristics as desired. If glutReshapeFunc() is not called, a default reshape function is

called which sets the view to minimize distortion and sets the display to the new height and

width.

1.9 Main Loop

The very last thing you must do is call glutMainLoop(). All windows that have been

created can now be shown, and rendering those windows is now effective. The program will

now be able to handle events as they occur (mouse clicks, window resizing, etc). In addition,

the registered display callback (from our glutDisplayFunc()) is triggered. Once this loop is

entered, it is never exited!

http://cs.uccs.edu/~semwal/man.html#glutDisplayFunc
http://cs.uccs.edu/~semwal/man.html#glutDisplayFunc
http://cs.uccs.edu/~semwal/man.html#glutReshapeFunc
http://cs.uccs.edu/~semwal/man.html#glutReshapeFunc
http://cs.uccs.edu/~semwal/man.html#glutMainLoop
http://cs.uccs.edu/~semwal/man.html#glutDisplayFunc

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 8

Geometric Objects used in graphics

2.1 Point, Lines and Polygons

Each geometric object is described by a set of vertices and the type of primitive to be

drawn. A vertex is no more than a point defined in three dimensional space. Whether and

how these vertices are connected is determined by the primitive type. Every geometric object

is ultimately described as an ordered set of vertices. We use the glVertex*() command to

specify a vertex. The '*' is used to indicate that there are variations to the base command

glVertex().

Some OpenGL command names have one, two, or three letters at the end to denote the

number and type of parameters to the command. The first character indicates the number of

values of the indicated type that must be presented to the command. The second character

indicates the specific type of the arguments. The final character, if present, is 'v', indicating

that the command takes a pointer to an array (a vector) of values rather than a series of

individual agreements.

For example, in the command glVertex3fv(), '3' is used to indicate three arguments, 'f' is used

to indicate the arguments are floating point, and 'v' indicates that the arguments are in vector

format.

Points: A point is represented by a single vertex. Vertices specified by the user as two-

dimensional (only x- and y-coordinates) are assigned a z-coordinate equal to zero. To control

the size of a rendered point, use glPointSize() and supply the desired size in pixels as the

argument. The default is as 1 pixel by 1 pixel point. If the width specified is 2.0, the point

will be a square of 2 by 2 pixels. glVertex*() is used to describe a point, but it is only

effective between a glBegin() and a glEnd() pair. The argument passed to glBegin()

determines what sort of geometric primitive is constructed from the vertices.

Lines: In OpenGL, the term line refers to a line segment, not the mathematician's version that

extends to infinity in both directions. The easiest way to specify a line is in terms of the

vertices at the endpoints. As with the points above, the argument passed to glBegin() tells it

what to do with the vertices. The option for lines includes:

http://cs.uccs.edu/~semwal/glman.html#glVertex
http://cs.uccs.edu/~semwal/glman.html#glVertex
http://cs.uccs.edu/~semwal/glman.html#glVertex
http://cs.uccs.edu/~semwal/glman.html#glPointSize
http://cs.uccs.edu/~semwal/glman.html#glVertex
http://cs.uccs.edu/~semwal/glman.html#glBegin
http://cs.uccs.edu/~semwal/glman.html#glEnd
http://cs.uccs.edu/~semwal/glman.html#glBegin
http://cs.uccs.edu/~semwal/glman.html#glBegin

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 9

GL_LINES: Draws a series of unconnected line segments drawn between each set of vertices.

An extraneous vertex is ignored.

GL_LINE_STRIP: Draws a line segment from the first vertex to the last. Lines can intersect

arbitrarily.

GL_LINE_LOOP: Same as GL_STRIP, except that a final line segment is drawn from the

last vertex back to the first.

With OpenGL, the description of the shape of an object being drawn is independent of the

description of its color. When a particular geometric object is drawn, it's drawn using the

currently specified coloring scheme. In general, an OpenGL programmer first sets the color,

using glColor*() and then draws the objects. Until the color is changed, all objects are drawn

in that color or using that color scheme.

Polygons: Polygons are the areas enclosed by single closed loops of line segments, where the line

segments are specified by the vertices at their endpoints. Polygons are typically drawn with the

pixels in the interior filled in, but you can also draw them as outlines or a set of points. In OpenGL,

there are a few restrictions on what constitutes a primitive polygon. For example, the edges of a

polygon cannot intersect and they must be convex (no indentations). There are special commands

for a three-sided (triangle) and four-sided (quadrilateral) polygons, glBegin(GL_TRIANGLES) and

glBegin(GL_QUADS), respectively. However, the general case of a polygon can be defined using

glBegin(GL_POLYGON).

2.2 Drawing 3-D Objects

GLUT has a series of drawing routines that are used to create three-dimensional

models. This means we don't have to reproduce the code necessary to draw these models in

each program. These routines render all their graphics in immediate mode. Each object comes

in two flavors, wire or solid. Available objects are:

2.3 Transformations

A modeling transformation is used to position and orient the model. For example, you

can rotate, translate, or scale the model - or some combination of these operations. To make

an object appear further away from the viewer, two options are available - the viewer can

move closer to the object or the object can be moved further away from the viewer. Moving

the viewer will be discussed later when we talk about viewing transformations. For right now,

http://cs.uccs.edu/~semwal/glman.html#glColor
http://cs.uccs.edu/~semwal/glman.html#glBegin
http://cs.uccs.edu/~semwal/glman.html#glBegin
http://cs.uccs.edu/~semwal/glman.html#glBegin

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 10

we will keep the default "camera" location at the origin, pointing toward the negative z-axis,

which goes into the screen perpendicular to the viewing plane.

When transformations are performed, a series of matrix multiplications are actually

performed to affect the position, orientation, and scaling of the model. You must, however,

think of these matrix multiplications occuring in the opposite order from how they appear in

the code. The order of transformations is critical. If you perform transformation A and then

perform transformation B, you almost always get something different than if you do them in

the opposite order.

Scaling: The scaling command glScale() multiplies the current matrix by a matrix that

stretches, shrinks, or reflects an object along the axes. Each x-, y-, and z-coordinate of every

point in the object is multiplied by the corresponding argument x, y, or z. The glScale*() is

the only one of the three modeling transformations that changes the apparent size of an

object: scaling with values greater than 1.0 stretches an object, and using values less than 1.0

shrinks it. Scaling with a -1.0 value reflects an object across an axis.

Translation: The translation command glTranslate() multiplies the current matrix by a

matrix that moves (translates) an object by the given x-, y-, and z-values.

Rotation: The rotation command glRotate() multiplies the current matrix that rotates an

object in a counterclockwise direction about the ray from the origin through the point (x,y,z).

The angle parameter specifies the angle of rotation in degrees. An object that lies farther from

the axis of rotation is more dramatically rotated (has a larger orbit) than an object drawn near

the axis.

http://cs.uccs.edu/~semwal/glman.html#glScale
http://cs.uccs.edu/~semwal/glman.html#glScale
http://cs.uccs.edu/~semwal/glman.html#glTranslate
http://cs.uccs.edu/~semwal/glman.html#glRotate

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 11

Sample Programs

Sample Program: 01

/* A basic Open GL window*/

#include<GL/glut.h>

void display (void)

{

 glClearColor (0.0,0.0,0.0,1.0);

 glClear (GL_COLOR_BUFFER_BIT);

 glLoadIdentity ();

 gluLookAt (0.0,0.0,5.0,0.0,0.0,0.0,0.0,1.0,0.0);

 glFlush ();

}

int main (int argc,char **argv)

{

 glutInit (&argc,argv);

 glutInitDisplayMode (GLUT_SINGLE);

 glutInitWindowSize (500,500);

 glutInitWindowPosition (100,100);

 glutCreateWindow ("A basic open GL window");

 glutDisplayFunc (display);

 glutMainLoop ();

 return 0;

}

Sample Program: 02

/*Program to create a teapot*/

#include<GL/glut.h>

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 12

void cube(void)

{

 glutWireTeapot(2);

}

void display(void)

{

 glClearColor(0.0,0.0,0.0,1.0);

 glClear(GL_COLOR_BUFFER_BIT);

 glLoadIdentity();

 gluLookAt(0.0,0.0,5.0,0.0,0.0,0.0,0.0,1.0,0.0);

 cube();

 glFlush();

}

void reshape(int w,int h)

{

 glViewport(0,0,(GLsizei)w,(GLsizei)h);

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 gluPerspective(60,(GLfloat)w/(GLfloat)h,1.0,100.0);

 glMatrixMode(GL_MODELVIEW);

}

int main(int agrc,char**agrv)

{

 glutInit(&agrc,agrv);

 glutInitDisplayMode(GLUT_SINGLE);

 glutInitWindowSize(500,500);

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 13

 glutInitWindowPosition(100,100);

 glutCreateWindow("A basic OpenGL Window");

 glutDisplayFunc(display);

 glutReshapeFunc(reshape);

 glutMainLoop();

 return 0;

}

Sample Program: 03

/* Program to create a cube*/

#include<GL/glut.h>

void cube(void)

{

 glutWireCube(2);

}

void display(void)

{

 glClearColor(0.0,0.0,0.0,1.0);

 glClear(GL_COLOR_BUFFER_BIT);

 glLoadIdentity();

 gluLookAt(0.0,0.0,5.0,0.0,0.0,0.0,0.0,1.0,0.0);

 cube();

 glFlush();

}

void reshape(int w,int h)

{

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 14

 glViewport(0,0,(GLsizei)w,(GLsizei)h);

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 gluPerspective(60,(GLfloat)w/(GLfloat)h,1.0,100.0);

 glMatrixMode(GL_MODELVIEW);

}

int main(int agrc,char** agrv)

{

 glutInit(&agrc,agrv);

 glutInitDisplayMode(GLUT_SINGLE);

 glutInitWindowSize(500,500);

 glutInitWindowPosition(100,100);

 glutCreateWindow("A basic OpenGL Window");

 glutDisplayFunc(display);

 glutReshapeFunc(reshape);

 glutMainLoop();

 return 0;

}

Sample Program: 04

/*point.c

/* Program to draw/display points */

#include<GL/glut.h>

#include<stdlib.h>

void myInit(void)

{

 glClearColor(2.0,2.0,2.0,4.0);

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 15

 glColor3f(0.0f,0.0f,0.0f);

 glPointSize(4.0);

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 gluOrtho2D(0.0,640.0,0.0,480.0);

}

void display(void)

{

 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_POINTS);

 glVertex2i(100,200);

 glVertex2i(400,200);

 glVertex2i(200,100);

 glVertex2i(200,400);

 glEnd();

 glFlush();

}

void main(int argc, char** argv)

{

 glutInit(&argc,argv);

 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

 glutInitWindowSize(500,500);

 glutInitWindowPosition(100,150);

 glutCreateWindow("My First Attempt");

 glutDisplayFunc(display);

 myInit();

 glutMainLoop();

}

Sample Program: 05

/*program to implement horizontal and vertical lines*/

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 16

#include<GL/glut.h>

#include<stdlib.h>

void myInit(void)

{

 glClearColor(2.0,2.0,2.0,4.0);

 glColor3f(0.0f,0.0f,0.0f);

 glLineWidth(4.0);

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 gluOrtho2D(0.0,640.0,0.0,480.0);

}

void drawLineInt(GLint x1,GLint y1,GLint x2,GLint y2)

{

 glBegin(GL_LINES);

 glVertex2i(x1,y1);

 glVertex2i(x2,y2);

 glEnd();

}

void display(void)

{

 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_LINES);

 glVertex2i(100,200);

 glVertex2i(400,200);

 glVertex2i(200,100);

 glVertex2i(200,400);

 glEnd();

 glFlush();

}

void main(int argc, char** argv)

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 17

{

 glutInit(&argc,argv);

 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

 glutInitWindowSize(500,500);

 glutInitWindowPosition(100,150);

 glutCreateWindow("My First Attempt");

 glutDisplayFunc(display);

 myInit();

 drawLineInt(100,200,40,60);

 glutMainLoop();

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 18

LAB PROGRAMS

1. Implement Brenham's line drawing algorithm for all types of slope

#include <GL/glut.h>

#include <stdio.h>

int x1, y1, x2, y2;

void myInit()

{

glClear(GL_COLOR_BUFFER_BIT);

glClearColor(0.0, 0.0, 0.0, 1.0);

glMatrixMode(GL_PROJECTION);

gluOrtho2D(0, 500, 0, 500);

}

 void draw_pixel(int x, int y)

{

glBegin(GL_POINTS);

 glVertex2i(x, y);

glEnd();

}

 void draw_line(int x1, int x2, int y1, int y2)

{

int dx, dy, i, e;

int incx, incy, inc1, inc2; int x,y;

dx = x2-x1;

dy = y2-y1;

if (dx < 0) dx = -dx; if (dy < 0) dy = -dy; incx = 1;

if (x2 < x1) incx = -1;

incy = 1;

if (y2 < y1) incy = -1;

 x = x1; y = y1;

if (dx > dy)

{

draw_pixel(x, y);

e = 2 * dy-dx;

inc1 = 2*(dy-dx);

 inc2 = 2*dy;

for (i=0; i<dx; i++)

{

if (e >= 0)

{

y += incy; e += inc1;

}

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 19

else

e += inc2;

x += incx; draw_pixel(x, y);

}

}

else

{

draw_pixel(x, y);

e = 2*dx-dy;

inc1 = 2*(dx-dy);

inc2 = 2*dx;

for (i=0; i<dy; i++)

{

if (e >= 0)

{

x += incx; e += inc1;

}

else

e += inc2;

y += incy; draw_pixel(x, y);

}

}

}

void myDisplay()

{

draw_line(x1, x2, y1, y2); glFlush();

}

int main(int argc, char **argv)

{

printf("Enter (x1, y1, x2, y2)\n");

scanf("%d %d %d %d", &x1, &y1, &x2, &y2);

glutInit(&argc, argv); glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);

glutInitWindowSize(500, 500);

glutInitWindowPosition(0, 0);

glutCreateWindow("Bresenham's Line Drawing");

myInit();

glutDisplayFunc(myDisplay);

glutMainLoop();

return 0;

}

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 20

Output:

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 21

2. Create and rotate a triangle about the origin and a fixed point.

 #include <GL/glut.h>

 #include <stdlib.h>

 #include <math.h>

/*Set initial display-window size. */

 GLsizei winWidth = 600, winHeight = 600;

/*Set range for world coordinates. */

GLfloat xwcMin = 0.0, xwcMax = 225.0;

 GLfloat ywcMin = 0.0, ywcMax = 225.0;

class wcPt2D

{

public:

GLfloat x, y;

};

typedef GLfloat Matrix3x3 [3][3];

 Matrix3x3 matComposite;

const GLdouble pi = 3.14159;

void init (void)

{

/*Set color of display window to white. */

glClearColor (1.0, 1.0, 1.0, 0.0);

}

/* Construct the 3 x 3 identity matrix. */

void matrix3x3SetIdentity (Matrix3x3 matIdent3x3)

{

GLint row, col;

for (row = 0; row < 3; row++)

for (col = 0; col < 3; col++)

matIdent3x3 [row][col] = (row == col);

}

void matrix3x3PreMultiply (Matrix3x3 m1, Matrix3x3 m2)

{

GLint row, col;

Matrix3x3 matTemp;

for (row = 0; row < 3; row++)

for (col = 0; col < 3 ; col++)

matTemp [row][col] = m1 [row][0] * m2 [0][col] + m1 [row][1] *m2 [1][col] + m1 [row][2]

* m2 [2][col];

for (row = 0; row < 3; row++)

for (col = 0; col < 3; col++)

m2 [row][col] = matTemp [row][col];

}

void translate2D (GLfloat tx, GLfloat ty)

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 22

{

Matrix3x3 matTransl;

/*Initialize translation matrix to identity.*/

matrix3x3SetIdentity (matTransl);

matTransl [0][2] = tx; matTransl [1][2] = ty;

/*Concatenate matTransl with the composite matrix.*/

matrix3x3PreMultiply (matTransl, matComposite);

}

void rotate2D (wcPt2D pivotPt, GLfloat theta)

{

Matrix3x3 matRot;

/*Initialize rotation matrix to identity.*/

matrix3x3SetIdentity (matRot);

matRot [0][0] = cos (theta); matRot [0][1] = -sin (theta);

matRot [0][2] = pivotPt.x * (1 - cos (theta)) + pivotPt.y * sin (theta);

matRot [1][0] = sin (theta); matRot [1][1] = cos (theta);

matRot [1][2] = pivotPt.y * (1 - cos (theta)) - pivotPt.x * sin (theta);

/*Concatenate matRot with the composite matrix.*/

matrix3x3PreMultiply (matRot, matComposite);

}

void scale2D (GLfloat sx, GLfloat sy, wcPt2D fixedPt)

{

Matrix3x3 matScale;

/*Initialize scaling matrix to identity.*/

matrix3x3SetIdentity (matScale);

matScale [0][0] = sx;

matScale [0][2] = (1 - sx) * fixedPt.x; matScale [1][1] = sy;

matScale [1][2] = (1 - sy) * fixedPt.y;

/*Concatenate matScale with the composite matrix.*/

matrix3x3PreMultiply (matScale, matComposite);

}

/* sing the composite matrix, calculate transformed coordinates.*/

void transformVerts2D (GLint nVerts, wcPt2D * verts)

{

GLint k;

GLfloat temp;

for (k = 0; k < nVerts; k++)

{

temp = matComposite [0][0] * verts [k].x + matComposite [0][1] * verts [k].y +

matComposite [0][2];

verts [k].y = matComposite [1][0] * verts [k].x + matComposite [1][1] * verts [k].y +

matComposite [1][2];

verts [k].x = temp;

}

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 23

}

void triangle (wcPt2D *verts)

{

GLint k;

glBegin (GL_TRIANGLES); for (k = 0; k < 3; k++)

glVertex2f (verts [k].x, verts [k].y); glEnd ();

}

void displayFcn (void)

{

/*Define initial position for triangle.*/

GLint nVerts = 3;

wcPt2D verts [3] = { {50.0, 25.0}, {150.0, 25.0}, {100.0, 100.0} };

/*Calculate position of triangle centroid.*/

wcPt2D centroidPt;

GLint k, xSum = 0, ySum = 0;

for (k = 0; k < nVerts; k++)

{

xSum += verts [k].x;

ySum += verts [k].y;

}

centroidPt.x = GLfloat (xSum) / GLfloat (nVerts);

centroidPt.y = GLfloat (ySum) / GLfloat (nVerts);

/*Set geometric transformation parameters.*/

wcPt2D pivPt,fixedPt;

pivPt = centroidPt; fixedPt = centroidPt;

GLfloat tx = 0.0, ty = 100.0;

GLfloat sx = 0.5, sy = 0.5;

GLdouble theta = pi/2.0;

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (0.0, 0.0, 1.0); // Set initial fill color to blue. triangle (verts); //

 Display blue triangle.

/*Initialize composite matrix to identity.*/

matrix3x3SetIdentity (matComposite);

/*Construct composite matrix for transformation sequence.*/

scale2D (sx, sy, fixedPt); // First transformation: Scale. rotate2D (pivPt, theta); //

 Second transformation: Rotate translate2D (tx, ty); // Final transformation:

Translate.

/*Apply composite matrix to triangle vertices.*/

 transformVerts2D (nVerts, verts);

glColor3f (1.0, 0.0, 0.0); // Set color for transformed triangle. triangle (verts);

glFlush ();

}

void winReshapeFcn (GLint newWidth, GLint newHeight)

{

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 24

glMatrixMode (GL_PROJECTION); glLoadIdentity ();

gluOrtho2D (xwcMin, xwcMax, ywcMin, ywcMax); glClear (GL_COLOR_BUFFER_BIT);

}

int main (int argc, char ** argv)

{

glutInit (&argc, argv);

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);

glutInitWindowPosition (50, 50);

glutInitWindowSize (winWidth, winHeight);

glutCreateWindow ("Geometric Transformation Sequence");

init ();

glutDisplayFunc (displayFcn);

glutReshapeFunc (winReshapeFcn);

glutMainLoop ();

return 0;

}

Output:

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 25

3. Draw a color cube and spin it using OpenGL transformation matrices

#include <stdio.h>

#include <stdlib.h>

GLfloat vertices[]={ -1.0,-1.0,-1.0,1.0,-1.0,-1.0,1.0, 1.0,-1.0,-1.0, 1.0,-1.0,-1.0,-1.0,

1.0,1.0,-1.0, 1.0,1.0, 1.0, 1.0,-1.0, 1.0, 1.0 };

GLfloat normals[]={ -1.0,-1.0,-1.0,1.0,-1.0,-1.0,1.0, 1.0,-1.0,-1.0, 1.0,-1.0,

-1.0,-1.0, 1.0,1.0,-1.0, 1.0,1.0, 1.0, 1.0,-1.0, 1.0, 1.0 };

 GLfloat colors[]={0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,

 1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0};

 GLubyte cubeIndices[]={0,3,2,1,2,3,7,6,0,4,7,3,1,2,6,5,4,5,6,7,0,1,5,4 };

static GLfloat theta[]={0.0,0.0,0.0};

static GLint axis=2;

void display(void)

{

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

glLoadIdentity(); glRotatef(theta[0],1.0,0.0,0.0);

glRotatef(theta[1],0.0,1.0,0.0);

glRotatef(theta[2],0.0,0.0,1.0);

glDrawElements(GL_QUADS,24,GL_UNSIGNED_BYTE,cubeIndices);

glFlush();

glutSwapBuffers();

}

 void mouse(int btn,int state,int x,int y)

{

if(btn==GLUT_LEFT_BUTTON && state==GLUT_DOWN)axis=0;

if(btn==GLUT_RIGHT_BUTTON && state==GLUT_DOWN) axis=1;

if(btn==GLUT_MIDDLE_BUTTON && state==GLUT_DOWN) axis=2;

}

 void spincube()

{

theta[axis]+=2.0;

if(theta[axis]>360.0)

theta[axis]-=360.0;

glutPostRedisplay();

}

void myReshape(int w,int h)

{

glViewport(0,0,w,h);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

if(w<=h)

 glOrtho(-2.0,2.0,2.0*(GLfloat)h/(GLfloat)w,2.0*(GLfloat)h/(GLfloat)w,10.0,10.0);

else

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 26

 glOrtho(-2.0*(GLfloat)w/(GLfloat)h,2.0*(GLfloat)w/(GLfloat)h,-2.0,2.0,-10.0,10.0);

glMatrixMode(GL_MODELVIEW);

}

int main(int argc,char **argv)

{

glutInit(&argc,argv);

glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB|GLUT_DEPTH);

glutInitWindowSize(500,500);

glutCreateWindow("color cuce");

glutReshapeFunc(myReshape);

glutDisplayFunc(display);

glutMouseFunc(mouse);

glutIdleFunc(spincube);

glEnable(GL_DEPTH_TEST);

glEnableClientState(GL_COLOR_ARRAY);

glEnableClientState(GL_VERTEX_ARRAY);

glEnableClientState(GL_NORMAL_ARRAY);

glVertexPointer(3,GL_FLOAT,0,vertices);

glColorPointer(3,GL_FLOAT,0,colors);

glNormalPointer(GL_FLOAT,0,normals);

glColor3f(1.0,1.0,1.0);

glutMainLoop();

}

Output:

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 27

4. Draw a color cube and allow the user to move the camera suitably to

experiment with perspective viewing.

#include <GL/glut.h>

#include <stdio.h>

#include <stdlib.h>

GLfloat vertices[]={ -1.0,-1.0,-1.0,

1.0,-1.0,-1.0,

1.0, 1.0,-1.0,

- 1.0, 1.0,-1.0,

- 1.0,-1.0, 1.0,

1.0,-1.0, 1.0,

1.0, 1.0, 1.0,

-1.0, 1.0, 1.0 };

GLfloat normals[] ={ -1.0,-1.0,-1.0,

1.0,-1.0,-1.0,

1.0, 1.0,-1.0,

-1.0, 1.0,-1.0,

-1.0,-1.0, 1.0,

1.0,-1.0, 1.0,

1.0, 1.0, 1.0,

-1.0, 1.0, 1.0 };

GLfloat colors[]={0.0,0.0,0.0,

1.0, 0.0, 0.0,

1.0,1.0,0.0,

0.0,1.0,0.0,

0.0,0.0,1.0,

1.0,0.0,1.0,

1.0,1.0,1.0,

0.0,1.0,1.0};

GLubyte cubeIndices[]={0,3,2,1, 2,3,7,6,0,4,7,3,1,2,6,5,4,5,6,7,0, 1, 5, 4 };

static GLfloat theta[]={0.0,0.0,0.0};

static GLint axis=2;

static GLdouble viewer[]={0.0,0.0,5.0};

void display(void)

{

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

glLoadIdentity(); gluLookAt(viewer[0],viewer[1],viewer[2],0.0,0.0,0.0,0.0,1.0,0.0);

glRotatef(theta[0],1.0,0.0,0.0);

glRotatef(theta[1],0.0,1.0,0.0);

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 28

glRotatef(theta[2],0.0,0.0,1.0);

glDrawElements(GL_QUADS,24,GL_UNSIGNED_BYTE,cubeIndices);

glFlush(); glutSwapBuffers();

}

void mouse(int btn, int state, int x, int y)

{

if(btn==GLUT_LEFT_BUTTON && state==GLUT_DOWN)axis=0;

if(btn==GLUT_RIGHT_BUTTON && state==GLUT_DOWN) axis=1;

if(btn==GLUT_MIDDLE_BUTTON && state==GLUT_DOWN) axis=2;

theta[axis]+=2.0;

if(theta[axis]>360.0) theta[axis]-=360.0;

glutPostRedisplay();

}

void keys(unsigned char key, int x, int y)

{

if(key=='x')viewer[0]-=1.0;

if(key=='X')viewer[0]+=1.0;

if(key=='y')viewer[1]-=1.0;

if(key=='Y')viewer[1]+=1.0;

if(key=='z')viewer[2]-=1.0;

if(key=='Z')viewer[2]+=1.0;

glutPostRedisplay();

}

void myReshape(int w, int h)

{

glViewport(0,0,w,h);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

if(w<=h)

glFrustum(-2.0,2.0,-2.0*(GLfloat)h/(GLfloat)w,2.0*(GLfloat)h/(GLfloat)w,2.0,20.0); else

glFrustum(-2.0,2.0,-2.0*(GLfloat)w/(GLfloat)h,2.0*(GLfloat)w/(GLfloat)h,2.0,20.0);

glMatrixMode(GL_MODELVIEW);

}

int main(int argc, char **argv)

{

glutInit(&argc,argv);

glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB|GLUT_DEPTH);

 glutInitWindowSize(500,500);

glutCreateWindow("color cuce");

glutReshapeFunc(myReshape);

glutDisplayFunc(display);

glutKeyboardFunc(keys);

glutMouseFunc(mouse);

glEnable(GL_DEPTH_TEST);

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 29

glEnableClientState(GL_COLOR_ARRAY);

glEnableClientState(GL_VERTEX_ARRAY);

glEnableClientState(GL_NORMAL_ARRAY);

glVertexPointer(3,GL_FLOAT,0,vertices);

glColorPointer(3,GL_FLOAT,0,colors);

glNormalPointer(GL_FLOAT,0,normals);

glColor3f(1.0,1.0,1.0);

glutMainLoop();

}

Output:

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 30

5. Clip a line using Cohen-Sutherland algorithm

#include<stdio.h>

#include<stdbool.h>

#include<GL/glut.h>

#define outcode int

#define true 1

#define false 0

double xmin=50,ymin=50, xmax=100,ymax=100; // Window boundaries

double xvmin=200,yvmin=200,xvmax=300,yvmax=300; // Viewport boundaries

//int x1, x2, y1, y2;

//bit codes for the right, left, top, & bottom const int RIGHT = 8;

const int LEFT = 2; const int TOP = 4; const int BOTTOM = 1;

//used to compute bit codes of a point outcode

ComputeOutCode (double x, double y);

//Cohen-Sutherland clipping algorithm clips a line from

//P0 = (x0, y0) to P1 = (x1, y1) against a rectangle with

//diagonal from (xmin, ymin) to (xmax, ymax).

void CohenSutherlandLineClipAndDraw (double x0, double y0,double x1, double y1)

{

//Outcodes for P0, P1, and whatever point lies outside the clip rectangle outcode

outcode0, outcode1, outcodeOut;

bool accept = false, done = false;

 //compute outcodes

outcode0 = ComputeOutCode (x0, y0); outcode1 = ComputeOutCode (x1, y1); do

{

if (!(outcode0 | outcode1)) //logical or is 0 Trivially accept & exit

{

accept = true; done = true;

}

else if (outcode0 & outcode1) //logical and is not 0. Trivially reject and exit done =

true;

else

{

//failed both tests, so calculate the line segment to clip

//from an outside point to an intersection with clip edge double x, y;

//At least one endpoint is outside the clip rectangle; pick it. outcodeOut = outcode0?

outcode0: outcode1;

//Now find the intersection point;

//use formulas y = y0 + slope * (x - x0), x = x0 + (1/slope)* (y - y0) if(outcodeOut &

TOP) //point is above the clip rectangle

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 31

{

x = x0 + (x1 - x0) * (ymax - y0)/(y1 - y0);y = ymax;

}

else if(outcodeOut & BOTTOM) //point is below the clip rectangle

{

x = x0 + (x1 - x0) * (ymin - y0)/(y1 - y0); y = ymin;

}

else if(outcodeOut & RIGHT) //point is to the right of clip rectangle

{

y = y0 + (y1 - y0) * (xmax - x0)/(x1 - x0);x = xmax;

}

else //point is to the left of clip rectangle

{

y = y0 + (y1 - y0) * (xmin - x0)/(x1 - x0); x = xmin;

}

//Now we move outside point to intersection point to clip

//and get ready for next pass. if (outcodeOut == outcode0)

{

 x0 = x; y0 = y;

outcode0 = ComputeOutCode (x0, y0);

}

else

{

x1 = x; y1 = y;

outcode1 = ComputeOutCode (x1, y1);

}

}

}while (!done);

if (accept)

{

// Window to viewport mappings

double sx=(xvmax-xvmin)/(xmax-xmin); // Scale parameters

double sy=(yvmax-yvmin)/(ymax-ymin);

double vx0=xvmin+(x0-xmin)*sx;

double vy0=yvmin+(y0-ymin)*sy;

double vx1=xvmin+(x1-xmin)*sx;

double vy1=yvmin+(y1-ymin)*sy;

//draw a red colored viewport

glColor3f(1.0, 0.0, 0.0); glBegin(GL_LINE_LOOP);

glVertex2f(xvmin, yvmin);

glVertex2f(xvmax, yvmin);

glVertex2f(xvmax, yvmax);

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 32

glVertex2f(xvmin, yvmax);

glEnd();

glColor3f(0.0,0.0,1.0); // draw blue colored clipped line glBegin(GL_LINES);

glVertex2d (vx0, vy0);

glVertex2d (vx1, vy1);

glEnd();

}

}

//Compute the bit code for a point (x, y) using the clip rectangle

//bounded diagonally by (xmin, ymin), and (xmax, ymax) outcode ComputeOutCode

(double x, double y)

{

outcode code = 0;

if (y > ymax) //above the clip window

code |= TOP;

else if (y < ymin) //below the clip window

code |= BOTTOM;

if (x > xmax) //to the right of clip window

code |= RIGHT;

else if (x < xmin) //to the left of clip window

code |= LEFT;

return code;

}

void display()

{

double x0=120,y0=10,x1=40,y1=130;

glClear(GL_COLOR_BUFFER_BIT);

//draw the line with red color

glColor3f(1.0,0.0,0.0);

//bres(120,20,340,250);

glBegin(GL_LINES);

glVertex2d (x0, y0);

glVertex2d (x1, y1);

glVertex2d (60,20);

glVertex2d (80,120);

glEnd();

//draw a blue colored window

glColor3f(0.0, 0.0, 1.0);

glBegin(GL_LINE_LOOP);

glVertex2f(xmin, ymin);

glVertex2f(xmax, ymin);

glVertex2f(xmax, ymax);

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 33

glVertex2f(xmin, ymax);

glEnd();

CohenSutherlandLineClipAndDraw(x0,y0,x1,y1);

CohenSutherlandLineClipAndDraw(60,20,80,120);

glFlush();

}

void myinit()

{

glClearColor(1.0,1.0,1.0,1.0);

glColor3f(1.0,0.0,0.0);

glPointSize(1.0);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0.0,499.0,0.0,499.0);

}

int main(int argc, char** argv)

{

//printf("Enter End points:");

//scanf("%d%d%d%d", &x1,&x2,&y1,&y2);

 glutInit(&argc,argv); glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);

glutInitWindowSize(500,500);

 glutInitWindowPosition(0,0);

glutCreateWindow("Cohen Suderland Line Clipping Algorithm");

glutDisplayFunc(display);

myinit();

glutMainLoop();

}

Output:

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 34

6. To draw a simple shaded scene consisting of a tea pot on a table. Define suitably the

position and properties of the light source along with the properties of the surfaces of

the solid object used in the scene

#include <GL/glut.h>

#include <stdio.h>

#include <stdlib.h>

void wall(double thickness)

{

glPushMatrix();

glTranslated(0.5,0.5*thickness,0.5);

glScaled(1.0,thickness,1.0);

glutSolidCube(1.0);

glPopMatrix();

}

void tableleg(double thick,double len)

{

glPushMatrix();

glTranslated(0,len/2,0);

glScaled(thick,len,thick);

glutSolidCube(1.0);

glPopMatrix();

}

void table(double topw,double topt,double legt,double legl)

{

glPushMatrix();

glTranslated(0,legl,0);

glScaled(topw,topt,topw);

glutSolidCube(1.0);

glPopMatrix();

double dist=0.95*topw/2.0-legt/2.0;

glPushMatrix();

glTranslated(dist,0,dist);

tableleg(legt,legl);

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 35

glTranslated(0,0,-2*dist);

tableleg(legt,legl);

glTranslated(-2*dist,0,2*dist);

tableleg(legt,legl);

glTranslated(0,0,-2*dist);

tableleg(legt,legl);

glPopMatrix();

}

void displaysolid(void)

{

GLfloat mat_ambient[]={0.7f,0.7f,0.7f,1.0f};

GLfloat mat_diffuse[]={0.5f,0.5f,0.5f,1.0f};

GLfloat mat_specular[]={1.0f,1.0f,1.0f,1.0f};

GLfloat mat_shininess[]={50.0f};

glMaterialfv(GL_FRONT,GL_AMBIENT,mat_ambient);

glMaterialfv(GL_FRONT,GL_DIFFUSE,mat_diffuse);

glMaterialfv(GL_FRONT,GL_SPECULAR,mat_specular);

glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess);

GLfloat lightint[]={0.7f,0.7f,0.7f,1.0f};

GLfloat lightpos[]={2.0f,6.0f,3.0f,0.0f};

glLightfv(GL_LIGHT0,GL_POSITION,lightpos);

glLightfv(GL_LIGHT0,GL_DIFFUSE,lightint);

glMatrixMode(GL_PROJECTION); glLoadIdentity();

double winht=1.0;

glOrtho(-winht*64/48.0,winht*64/48.0,-winht,winht,0.1,100.0);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt(2.3,1.3,2.0,0.0,0.25,0.0,0.0,1.0,0.0);

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

glPushMatrix(); glRotated(90.0,0.0,0.0,1.0);

wall(0.02); glPopMatrix();

wall(0.02); glPushMatrix();

glRotated(-90.0,1.0,0.0,0.0);

wall(0.02); glPopMatrix();

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 36

glPushMatrix();

glTranslated(0.4,0,0.4); table(0.6,0.02,0.02,0.3);

glPopMatrix();

glPushMatrix();

glTranslated(0.6,0.38,0.5);

glRotated(30,0,1,0);

glutSolidTeapot(0.08);

glPopMatrix(); glFlush();

}

int main(int argc,char**argv)

{

glutInit(&argc,argv);

glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB|GLUT_DEPTH);

glutInitWindowSize(500,500);

glutInitWindowPosition(0,0);

glutCreateWindow("teapot");

glutDisplayFunc(displaysolid);

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

glShadeModel(GL_SMOOTH);

glEnable(GL_DEPTH_TEST);

glEnable(GL_NORMALIZE);

glClearColor(0.1,0.1,0.1,0.0);

glViewport(0,0,640,480);

glutMainLoop();

}

Output:

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 37

7. Design, develop and implement recursively subdivide a tetrahedron to form 3D

sierpinski gasket. The number of recursive steps is to be specified by the user

#include <stdlib.h>

#include <stdio.h>

#include <GL/glut.h>

typedef float point[3];

/* initial tetrahedron */

point v[]={{0.0, 0.0, 1.0}, {0.0, 0.942809, -0.33333},{-0.816497, -0.471405, -0.333333},

{0.816497, -0.471405, -0.333333}};

static GLfloat theta[] = {0.0,0.0,0.0};

int n;

void triangle(point a, point b, point c)

/* display one triangle using a line loop for wire frame, a single

normal for constant shading, or three normals for interpolative shading */

{

glBegin(GL_POLYGON);

 glNormal3fv(a);

glVertex3fv(a);

glVertex3fv(b);

glVertex3fv(c);

glEnd();

}

void divide_triangle(point a, point b, point c, int m)

{ /* triangle subdivision using vertex numbers

Righth and rule applied to create outward pointing faces */

point v1, v2, v3;

int j; if(m>0)

{

for(j=0; j<3; j++) v1[j]=(a[j]+b[j])/2;

for(j=0; j<3; j++) v2[j]=(a[j]+c[j])/2;

for(j=0; j<3; j++) v3[j]=(b[j]+c[j])/2;

divide_triangle(a, v1, v2, m-1);

divide_triangle(c, v2, v3, m-1);

divide_triangle(b, v3, v1, m-1);

}

else(triangle(a,b,c)); /* draw triangle at end of recursion */

}

void tetrahedron(int m)

{ /* Apply triangle subdivision to faces of tetrahedron */

glColor3f(1.0,0.0,0.0);

divide_triangle(v[0], v[1], v[2], m);

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 38

glColor3f(0.0,1.0,0.0);

divide_triangle(v[3], v[2], v[1], m);

glColor3f(0.0,0.0,1.0);

divide_triangle(v[0], v[3], v[1], m);

glColor3f(0.0,0.0,0.0);

divide_triangle(v[0], v[2], v[3], m);

}

void display(void)

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glLoadIdentity(); tetrahedron(n);

glFlush();

}

void myReshape(int w, int h)

{

glViewport(0, 0, w, h);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

if (w <= h)

glOrtho(-2.0, 2.0, -2.0 * (GLfloat) h / (GLfloat) w, 2.0 * (GLfloat) h / (GLfloat) w, -10.0,

10.0);

 else

 glOrtho(-2.0 * (GLfloat) w / (GLfloat) h,

2.0 * (GLfloat) w / (GLfloat) h, -2.0, 2.0, -10.0, 10.0);

 glMatrixMode(GL_MODELVIEW);

glutPostRedisplay();

}

void main(int argc, char **argv)

{

printf(" No. of Divisions ? ");

scanf("%d",&n);

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);

glutInitWindowSize(500, 500);

glutCreateWindow("3D Gasket");

glutReshapeFunc(myReshape);

glutDisplayFunc(display);

glEnable(GL_DEPTH_TEST);

glClearColor (1.0, 1.0, 1.0, 1.0);

glutMainLoop();

}

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 39

Output:

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 40

8. Develop a menu driven program to animate flag using Bezier Curve

algorithm

#include<GL/glut.h>

#include<math.h>

#include<stdio.h>

void bezierCoefficients(int n,int *c)

{

int k,i; for(k=0;k<=n;k++)

{

c[k]=1;

for(i=n;i>=k+1;i--) c[k]*=i;

for(i=n-k;i>=2;i--) c[k]/=i;

}

}

void display()

{

int cp[4][2]={{10,10},{100,200},{200,50},{300,300}};

int c[4],k,n=3;

float x,y,u,blend;

bezierCoefficients(n,c);

glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0,0.0,0.0);

glLineWidth(5.0);

glBegin(GL_LINE_STRIP);

for(u=0;u<1.0;u+=0.01)

{

x=0;y=0;

for(k=0;k<4;k++)

{

blend=c[k]*pow(u,k)*pow(1-u,n-k);

x+=cp[k][0]*blend;

y+=cp[k][1]*blend;

}

glVertex2f(x,y);

}

glEnd();

glFlush();

}

void myinit()

{

glClearColor(1.0,1.0,1.0,1.0);

glColor3f(1.0,0.0,0.0);

glPointSize(5.0);

gluOrtho2D(0.0,600,0.0,600.0);

}

int main(int argc, char **argv)

{

glutInit(&argc,argv);

glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 41

glutInitWindowSize(600,600);

glutCreateWindow("Bezier Curve");

glutDisplayFunc(display);

myinit();

glutMainLoop();

return 0;

}

Output:

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 42

9. Develop a menu driven program to fill the polygon using scan line algorithm

#include <stdlib.h>

#include <stdio.h>

#include <GL/glut.h>

float x1,x2,x3,x4,y1,y2,y3,y4;

void edgedetect(float x1,float y1,float x2,float y2,int *le,int *re)

{

float mx,x,temp;

int i;

if((y2-y1)<0)

{

temp=y1;y1=y2;y2=temp;

temp=x1;x1=x2;x2=temp;

}

if((y2-y1)!=0)

mx=(x2-x1)/(y2-y1);

else

mx=x2-x1;

x=x1;

for(i=y1;i<=y2;i++)

{

if(x<(float)le[i])

le[i]=(int)x;

if(x>(float)re[i])

re[i]=(int)x;

x+=mx;

}

}

void draw_pixel(int x,int y)

{

glColor3f(1.0,1.0,0.0);

glBegin(GL_POINTS);

glVertex2i(x,y); glEnd();

}

void scanfill(float x1,float y1,float x2,float y2,float x3,float y3,float x4,float y4)

{

int le[500],re[500];

int i,y;

for(i=0;i<500;i++)

{

le[i]=500; re[i]=0;

}

edgedetect(x1,y1,x2,y2,le,re);

edgedetect(x2,y2,x3,y3,le,re);

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 43

edgedetect(x3,y3,x4,y4,le,re);

edgedetect(x4,y4,x1,y1,le,re);

for(y=0;y<500;y++)

{

if(le[y]<=re[y])

for(i=(int)le[y];

i<(int)re[y];i++)

draw_pixel(i,y);

}

}

void display()

{

x1=200.0;y1=200.0;x2=100.0;y2=300.0;x3=200.0;y3=400.0;x4=300.0;y4=300.0;

glClear(GL_COLOR_BUFFER_BIT);

glColor3f(0.0, 0.0, 1.0);

glBegin(GL_LINE_LOOP);

glVertex2f(x1,y1);

glVertex2f(x2,y2);

glVertex2f(x3,y3);

glVertex2f(x4,y4);

glEnd();

scanfill(x1,y1,x2,y2,x3,y3,x4,y4);

glFlush();

}

void myinit()

{

glClearColor(1.0,1.0,1.0,1.0);

glColor3f(1.0,0.0,0.0);

glPointSize(1.0);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0.0,499.0,0.0,499.0);

}

int main(int argc, char** argv)

{

glutInit(&argc,argv);

glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);

glutInitWindowSize(500,500);

glutInitWindowPosition(0,0);

glutCreateWindow("Filling a Polygon using Scan-line Algorithm");

glutDisplayFunc(display);

myinit();

glutMainLoop();

}

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 44

Output:

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 45

Viva Questions & Answers

1. Define Computer graphics?

Computer graphics are graphics created by computers and, more generally, the

representation and manipulation of pictorial data by a computer

2. Define Computer Animation?

Computer animation is the art of creating moving images via the use of computers. It

is a subfield of computer graphics and animation

3. Define Pixel?

The word pixel is based on a contraction of pix ("pictures") and el (for "element").

Pixels are normally arranged in a 2-dimensional grid, and are often represented using

dots, squares, or rectangles

4. Define Raster graphics?

Raster Graphics, which is the representation of images as an array of pixels, as it is

typically used for the representation of photographic images.

5. Define Image?

An image (from Latin imago) is an artifact, usually two-dimensional (a picture), that

has a similar appearance to some subject—usually a physical object or a person.

6. Define Rendering?

Rendering is the process of generating an image from a model, by means of computer

programs.

7. Define Ray Tracing?

Ray tracing is a technique for generating an image by tracing the path of light through

pixels in an image plane.

8. Define Projection?

Projection is a method of mapping points to a plane.

http://en.wikipedia.org/wiki/Graphics
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Representation
http://en.wikipedia.org/wiki/Manipulation
http://en.wikipedia.org/wiki/Pictorial
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Computer_animation
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Animation
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Latin
http://en.wikipedia.org/wiki/Subject_(philosophy)
http://en.wikipedia.org/wiki/Person
http://en.wikipedia.org/wiki/Rendering_(computer_graphics)
http://en.wikipedia.org/wiki/3D_model
http://en.wikipedia.org/wiki/Ray_tracing
http://en.wikipedia.org/wiki/Digital_image
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Image_plane
http://en.wikipedia.org/wiki/3D_projection

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 46

9. Define 3D Projection?

3D projection is a method of mapping three dimensional points to a two dimensional

plane.

10. Define Texture Mapping?

Texture mapping is a method for adding detail, surface texture, or color to a

computer-generated graphic or 3D model.

11. Define Vector Graphics?

Vector graphics formats are complementary to raster graphics, which is the

representation of images as an array of pixels, as it is typically used for the

representation of photographic images.

12. Define Pinhole camera model?

The pinhole camera model describes the mathematical relationship between the

coordinates of a 3D point and its projection onto the image plane of an ideal pinhole

camera, where the camera aperture is described as a point and no lenses are used to

focus light.

13. Define digital image?

A digital image is a representation of a two-dimensional image using ones and zeros

(binary). Without qualifications, the term "digital image" usually refers to raster

images.

14. Define Grayscale?

A grayscale or greyscale digital image is an image in which the value of each pixel is

a single sample, that is, it carries only intensity information.

15. Define Pinhole Camera?

A pinhole camera is a very simple camera with no lens and a single very small

aperture. Simply explained, it is a light-proof box with a small hole in one side.

16. Define CCD?

A charge-coupled device (CCD) is an analog shift register that enables the

transportation of analog signals (electric charges) through successive stages

(capacitors), controlled by a clock signa.

http://en.wikipedia.org/wiki/3D_projection
http://en.wikipedia.org/wiki/Texture_mapping
http://en.wikipedia.org/wiki/Computer-generated_imagery
http://en.wikipedia.org/wiki/3D_model
http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikipedia.org/wiki/Raster_graphics
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Projection
http://en.wikipedia.org/wiki/Pinhole_camera
http://en.wikipedia.org/wiki/Pinhole_camera
http://en.wikipedia.org/wiki/Pinhole_camera
http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Raster_image
http://en.wikipedia.org/wiki/Raster_image
http://en.wikipedia.org/wiki/Raster_image
http://en.wikipedia.org/wiki/Digital_image
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Sample_(signal)
http://en.wikipedia.org/wiki/Intensity
http://en.wikipedia.org/wiki/Camera
http://en.wikipedia.org/wiki/Photographic_lens
http://en.wikipedia.org/wiki/Aperture
http://en.wikipedia.org/wiki/Shift_register
http://en.wikipedia.org/wiki/Clock_signal

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 47

17. Define Image Resolution?

Image resolution describes the detail an image holds. The term applies equally to

digital images, film images, and other types of images. Higher resolution means more

image detail.

18. Define Wavelength?

Wavelength is the distance between repeating units of a propagating wave of a given

frequency.

19. What is an Electromagnetic Spectrum?

The electromagnetic (EM) spectrum is the range of all possible electromagnetic

radiation frequencies. The "electromagnetic spectrum" (usually just spectrum) of an

object is the characteristic distribution of electromagnetic radiation from that

particular object.

20. Define Halftone?

Halftone is the reprographic technique that simulates continuous tone imagery

through the use of dots, varying either in size or in spacing. 'Halftone' can also be

used to refer specifically to the image that is produced by this process.

21. Define WCS?

World Coordinate Systems. While every point in the FITS data array can be located

in the coordinate system determined by the array axes. World Coordinate Systems

(WCS) are any coordinate systems that describe the physical coordinate associated

with a data array, such as sky coordinates.

22. What is OpenGL?

OpenGL(R) is the software interface for graphics hardware that allows graphics

programmers to produce high-quality color images of 3D objects. OpenGL is a

rendering only, vendor neutral API providing 2D and 3D graphics functions,

including modeling, transformations, color, lighting, smooth shading, as well as

advanced features like texture mapping, NURBS, fog, alpha blending and motion

blur. OpenGL works in both immediate and retained (display list) graphics modes.

OpenGL is window system and operating system independent. OpenGL has been

integrated with Windows NT and with the X Window System under UNIX. Also,

OpenGL is network transparent. A defined common extension to the X Window

System allows an OpenGL client on one vendor's platform to run across a network to

another vendor's OpenGL server

http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Digital_image
http://en.wikipedia.org/wiki/Wave
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Electromagnetic_radiation
http://en.wikipedia.org/wiki/Electromagnetic_radiation
http://en.wikipedia.org/wiki/Electromagnetic_radiation
http://en.wikipedia.org/wiki/Reprographic
http://en.wikipedia.org/wiki/Continuous_tone

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 48

23. What hardware supports the OpenGL API?

Many vendors have developed or are developing implementations of the OpenGL API

for a variety of embedded hardware devices including aircraft avionics, PDAs

(personal digital assistants such as Palm
TM

), cellular phones, game consoles (Sony

Playstation® 2), television set-top boxes, and display devices (X-Terms and network

computers). The small size of the OpenGL API, its open nature, and now free use of

the sample implementation make the OpenGL API an ideal graphics library for these

types of applications.

24. What are the benefits of OpenGL for hardware and software developers?

 Industry standard

 Reliable and portable.

 Evolving.

 Scalable.

 Easy to use.

 Well-documented.

25. What is the GLUT Toolkit?

GLUT is a portable toolkit which performs window and event operations to support

OpenGL rendering

26. How does the camera work in OpenGL?

 As far as OpenGL is concerned, there is no camera. More specifically, the camera is

always located at the eye space coordinate (0.0, 0.0, 0.0). To give the appearance of

moving the camera, your OpenGL application must move the scene with the inverse

of the camera transformation by placing it on the MODELVIEW matrix. This is

commonly referred to as the viewing transformation. In practice this is

mathematically equivalent to a camera transformation but more efficient because

model transformations and camera transformations are concatenated to a single

matrix. As a result though, certain operations must be performed when the camera and

only the camera is on the MODELVIEW matrix. For example to position a light

source in world space it most be positioned while the viewing transformation and only

the viewing transformation is applied to the MODELVIEW matrix.

27. How do I implement a zoom operation?

A simple method for zooming is to use a uniform scale on the ModelView matrix.

However, this often results in clipping by the zNear and zFar clipping planes if the

model is scaled too large. A better method is to restrict the width and height of the

view volume in the Projection matrix. For example, your program might maintain a

zoom factor based on user input, which is a floating-point number. When set to a

value of 1.0, no zooming takes place. Larger values result in greater zooming or a

more restricted field of view, while smaller values cause the opposite to occur.

Computer Graphics Lab with Mini Project-18CSL67 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 49

28. How do I get a specified point (XYZ) to appear at the center of the scene?

gluLookAt() is the easiest way to do this. Simply set the X, Y, and Z values of your

point as the fourth, fifth, and sixth parameters to gluLookAt ().

29. Define Instruction Pipeline?

An instruction pipeline is a technique used in the design of computers and other

digital electronic devices to increase their instruction throughput (the number of

instructions that can be executed in a unit of time).

30. Define Geometric Pipeline?

Geometric manipulation of modeling primitives, such as that performed by a

Geometry Pipeline, is the first stage in computer graphics systems which perform

image generation based on geometric models.

31. Define Perspective Projection?

Perspective (from Latin perspicere, to see through) in the graphic arts, such as

drawing, is an approximate representation, on a flat surface (such as paper), of an

image as it is perceived by the eye. The two most characteristic features of

perspective are that objects are drawn.

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Latin

