
 Channabasaveshwara Institute of Technology
 (Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi)

 (ISO 9001:2015 Certified Institution)

NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka.

System Software
Laboratory

[18CSL66]

Department of Computer Science & Engineering

VI Semester

 Academic Year : 2022-23

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 1

1. INTRODUCTION TO LEX

Lex and YACC helps you write programs that transforms structured input. Lex

generates C code for lexical analyzer whereas YACC generates code for Syntax analyzer.

Lexical analyzer is build using a tool called LEX. Input is given to LEX and lexical analyzer

is generated.

Lex is a UNIX utility. It is a program generator designed for lexical processing of

character input streams. Lex generates C code for lexical analyzer. It uses the patterns that

match strings in the input and converts the strings to tokens. Lex helps you by taking a set

of descriptions of possible tokens and producing a C routine, which we call a lexical

analyzer. The token descriptions that Lex uses are known as regular expressions.

1.1 Steps in writing LEX Program:

1st Step: Using gedit create a file with extension l. For example: prg1.l

2ndStep: lex prg1.l

3rdStep: cc lex.yy.c –ll

4thStep: ./a.out

1.2 Structure of LEX source program:

 {definitions}

 %%

 {rules}

 %%

 {user subroutines/code section}

%% is a delimiter to the mark the beginning of the Rule section. The second %% is optional,

but the first is required to mark the beginning of the rules. The definitions and the code

/subroutines are often omitted.

Lex variables

yyin Of the type FILE*. This points to the current file being parsed by the lexer.

yyout Of the type FILE*. This points to the location where the output of the

lexerwill be written. By default, both yyin and yyout point to standard input

and output.

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 2

Lex functions

yylex() The function that starts the analysis. It is automatically generated by Lex.

yywrap() This function is called when end of file (or input) is encountered. If this

function returns 1, the parsing stops. So, this can be used to parse multiple

files. Code can be written in the third section, which will allow multiple

files to be parsed. The strategy is to make yyin file pointer (see the

preceding table) point to a different file until all the files are parsed. At the

end, yywrap() can return 1 to indicate end of parsing.

yyless(int n) This function can be used to push back all but first ‘n’ characters of the

read token.

yymore() This function tells the lexer to append the next token to the current token.

1.3 Regular Expressions

 It is used to describe the pattern. It is widely used to in lex. It uses meta language. The

character used in this meta language are part of the standard ASCII character set. An

expression is made up of symbols. Normal symbols are characters and numbers, but there are

other symbols that have special meaning in Lex. The following two tables define some of the

symbols used in Lex and give a few typical examples.

Character Meaning

A-Z, 0-9, a-z Characters and numbers that form part of the pattern.

. Matches any character except \n.

-
Used to denote range. Example: A-Z implies all characters from A
to Z.

[]
A character class. Matches any character in the brackets. If the first
character is ^ then it indicates a negation pattern. Example: [abC]
matches either of a, b, and C.

* Match zero or more occurrences of the preceding pattern.

+

Matches one or more occurrences of the preceding pattern.(no
empty string).
Ex: [0-9]+ matches “1”,”111” or “123456” but not an empty string.

?

Matches zero or one occurrences of the preceding pattern.
Ex: -?[0-9]+ matches a signed number including an optional
leading minus.

$ Matches end of line as the last character of the pattern.

{ }

1) Indicates how many times a pattern can be present. Example:
A{1,3} implies one to three occurrences of A may be present.

2) If they contain name, they refer to a substitution by that name.
Ex: {digit}

\
Used to escape meta characters. Also used to remove the special
meaning of characters as defined in this table.

yytext The text of the matched pattern is stored in this variable (char*).

yyleng Gives the length of the matched pattern.

yylineno Provides current line number information. (May or may not be supported

by the lexer.)

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 3

Ex: \n is a newline character, while “*” is a literal asterisk.
^ Negation.

|

Matches either the preceding regular expression or the following
regular expression.
Ex: cow|sheep|pig matches any of the three words.

"< symbols>" Literal meanings of characters. Meta characters hold.

/

Look ahead. Matches the preceding pattern only if followed by the
succeeding expression. Example: A0/1 matches A0 only if A01 is
the input.

()

Groups a series of regular expressions together into a new regular
expression.
Ex: (01) represents the character sequence 01. Parentheses are
useful when building up complex patterns with *,+ and |

Examples of regular expressions

Regular
expression

Meaning

joke[rs] Matches either jokes or joker.

A{1,2}shis+ Matches AAshis, Ashis, AAshi, Ashi.

(A[b-e])+
Matches zero or one occurrences of A followed by any character
from b to e.

[0-9] 0 or 1 or 2 or………9
[0-9]+ 1 or 111 or 12345 or …At least one occurrence of preceding exp
[0-9]* Empty string (no digits at all) or one or more occurrence.
-?[0-9]+ -1 or +1 or +2 …..
[0.9]*\.[0.9]+ 0.0,4.5 or .31415 But won’t match 0 or 2

Examples of token declarations

Token Associated expression Meaning

number ([0-9])+ 1 or more occurrences of a digit

chars [A-Za-z] Any character

Blank " " A blank space

Word (chars)+ 1 or more occurrences of chars

Variable (chars)+(number)*(chars)*(number)*

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 4

2. INTRODUCTION TO YACC

YACC provides a general tool for imposing structure on the input to a computer

program. The input specification is a collection of grammar rules. Each rule describes an

allowable structure and gives it a name. YACC prepares a specification of the input process.

YACC generates a function to control the input process. This function is called a parser.

The name is an acronym for “Yet Another Compiler Compiler”. YACC generates the

code for the parser in the C programming language. YACC was developed at AT& T for the

Unix operating system. YACC has also been rewritten for other languages, including Java,

Ada.

The function parser calls the lexical analyzer to pick up the tokens from the input

stream. These tokens are organized according to the input structure rules .The input structure

rule is called as grammar. When one of the rule is recognized, then user code supplied for this

rule (user code is action) is invoked. Actions have the ability to return values and makes use

of the values of other actions.

2.1 Steps in writing YACC Program:

1st Step: Using gedit editor create a file with extension y. For example: gedit prg1.y

2nd Step: YACC –d prg1.y

3rd Step: lex prg1.l

4th Step: cc y.tab.clex.yy.c -ll

5th Step: /a.out

When we run YACC, it generates a parser in file y.tab.c and also creates an include

file y.tab.h. To obtain tokens, YACC calls yylex. Function yylex has a return type of int, and

returns the token.Values associated with the token are returned by lex in variable yylval.

2.2 Structure of YACC source program:

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 5

Basic Specification:

Every YACC specification file consists of three sections. The declarations, Rules (of

grammars), programs. The sections are separated by double percent “%%” marks. The % is

generally used in YACC specification as an escape character.

The general format for the YACC file is very similar to that of the Lex file.

 {definitions}

 %%

 {rules}

 %%

 {user subroutines}

%% is a delimiter to the mark the beginning of the Rule section.

Definition Section

%union It defines the Stack type for the Parser. It is a union of various datas/structures/

 Objects

%token These are the terminals returned by the yylex function to the YACC. A token can

 also have type associated with it for good type checking and syntax directed

 translation. A type of a token can be specified as %token <stack

 member>tokenName.

 Ex: %token NAME NUMBER

%type The type of a non-terminal symbol in the Grammar rule can be specified with

 this.The format is %type <stack member>non-terminal.

%noassoc Specifies that there is no associatively of a terminal symbol.

%left Specifies the left associatively of a Terminal Symbol

%right Specifies the right associatively of a Terminal Symbol.

%start Specifies the L.H.S non-terminal symbol of a production rule which should be

 taken as the starting point of the grammar rules.

%prec Changes the precedence level associated with a particular rule to that of the

 following token name or literal

Rules Section

The rules section simply consists of a list of grammar rules. A grammar rule has the form:

A: BODY

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 6

A represents a nonterminal name, the colon and the semicolon are YACC punctuation

and BODY represents names and literals. The names used in the body of a grammar rule may

represent tokens or nonterminal symbols. The literal consists of a character enclosed in single

quotes.

Names representing tokens must be declared as follows in the declaration sections:

%token name1 name2…

Every name not defined in the declarations section is assumed to represent a non-

terminal symbol. Every non-terminal symbol must appear on the left side of at least one rule.

Of all the no terminal symbols, one, called the start symbol has a particular importance. The

parser is designed to recognize the start symbol. By default the start symbol is taken to be

the left hand side of the first grammar rule in the rules section.

With each grammar rule, the user may associate actions to be. These actions may return

values, and may obtain the values returned by the previous actions. Lexical analyzer can return

values for tokens, if desired. An action is an arbitrary C statement. Actions are enclosed in curly

braces.

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 7

3. INTRODUCTION TO UNIX

Basic UNIX commands

Folder/Directory Commands and Options

Action UNIX options &filespec

Check current Print Working Directory pwd

Return to user's home folder cd

Up one folder cd ..

Make directory mkdirproj1

Remove empty directory rmdir/usr/sam

Remove directory-recursively rm–r

File Listing Commands and Options

Action UNIX options &filespec

List directory tree- recursively ls –r
List last access dates of files, with hidden
files ls -l –a

List files by reverse date ls -t -r *.*

List files verbosely by size of file ls -l -s *.*
List files recursively including contents of
other directories ls -R *.*

List number of lines in folder wc -l *.xtumlsed -n '$='

List files with x anywhere in the name ls | grep x

File Manipulation Commands and Options

Action UNIX options &filespec

Create new(blank)file touch afilename

Copy old file to new file. -p preserve file
attributes(e.g. ownership and edit dates)-r
copy recursively through directory
structure -a archive, combines the flags-p –
R and-d cpold.filenew.file

Move old.file(-i interactively flag prompts
before overwriting files) mv –i old.file/tmp

Remove file(-intention) rm–i sam.txt

View a file vi file.txt

Concatenate files cat file1file2 to standard output.

Counts-lines,-words, and- characters in a
file wc -l

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 8

4. INTRODUCTION TO OPERATING SYSTEMS

Introduction

An Operating System is a program that manages the Computer hardware. It controls

and coordinates the use of the hardware among the various application programs for the

various users.

A Process is a program in execution. As a process executes, it changes state

➢ New: The process is being created

➢ Running: Instructions are being executed

➢ Waiting: The process is waiting for some event to occur

➢ Ready: The process is waiting to be assigned to a process

➢ Terminated : The process has finished execution

Apart from the program code, it includes the current activity represented by

➢ Program Counter,

➢ Contents of Processor registers,

➢ Process Stack which contains temporary data like function parameters, return
addresses and local variables

➢ Data section which contains global variables

➢ Heap for dynamic memory allocation

A Multi-programmed system can have many processes running simultaneously with

the CPU multiplexed among them. By switching the CPU between the processes, the OS

can make the computer more productive. There is Process Scheduler which selects the

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 9

process among many processes that are ready, for program execution on the CPU.

Switching the CPU to another process requires performing a state save of the current

process and a state restore of new process, this is Context Switch.

4.1 Scheduling Algorithms

CPU Scheduler can select processes from ready queue based on various scheduling

algorithms. Different scheduling algorithms have different properties, and the choice of a

particular algorithm may favor one class of processes over another. The scheduling criteria

include

 CPU utilization:

 Throughput: The number of processes that are completed per unit time.

 Waiting time: The sum of periods spent waiting in ready queue.

 Turnaround time: The interval between the time of submission of process to the time
of completion.

 Response time: The time from submission of a request until the first response is
produced.

The different scheduling algorithms are

 FCFS: First Come First Served Scheduling

 SJF: Shortest Job First Scheduling

 SRTF: Shortest Remaining Time First Scheduling

 Priority Scheduling

 Round Robin Scheduling

 Multilevel Queue Scheduling

 Multilevel Feedback Queue Scheduling

4.2 Deadlocks

A process requests resources; and if the resource is not available at that time, the

process enters a waiting state. Sometimes, a waiting process is never able to change state,

because the resource is has requested is held by another process which is also waiting. This

situation is called Deadlock. Deadlock is characterized by four necessary conditions

 Mutual Exclusion

 Hold and Wait

 No Preemption

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 10

 Circular Wait

Deadlock can be handled in one of these ways,

 Deadlock Avoidance

 Deadlock Detection and Recover

Shortest remaining time scheduling algorithm:

Shortest remaining time, also known as shortest remaining time first (SRTF), is

a scheduling method that is a preemptive version of shortest job next scheduling. In this

scheduling algorithm, the process with the smallest amount of time remaining until

completion is selected to execute. Since the currently executing process is the one with the

shortest amount of time remaining by definition, and since that time should only reduce as

execution progresses, processes will always run until they complete or a new process is added

that requires a smaller amount of time.

Shortest remaining time is advantageous because short processes are handled very

quickly. The system also requires very little overhead since it only makes a decision when a

process completes or a new process is added, and when a new process is added the algorithm

only needs to compare the currently executing process with the new process, ignoring all

other processes currently waiting to execute.

Like shortest job first, it has the potential for process starvation; long processes may

be held off indefinitely if short processes are continually added.

Round Robin (RR) scheduling algorithm:

Round-robin (RR) is one of the algorithms employed by process and

networkschedulers in computing. As the term is generally used, time slices (also known as

time quanta) are assigned to each process in equal portions and in circular order, handling

all processes without priority (also known as cyclic executive). Round-robin scheduling is

simple, easy to implement, and starvation-free. Round-robin scheduling can also be applied

to other scheduling problems, such as data packet scheduling in computer networks. It is an

operating system concept.

The name of the algorithm comes from the round-robin principle known from other

fields, where each person takes an equal share of something in turn.

https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Preemption_(computing)
https://en.wikipedia.org/wiki/Shortest_job_next
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Starvation_(computing)
https://en.wikipedia.org/wiki/Process_scheduler
https://en.wikipedia.org/wiki/Network_scheduler
https://en.wikipedia.org/wiki/Network_scheduler
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Preemption_(computing)#Time_slice
https://en.wiktionary.org/wiki/priority
https://en.wikipedia.org/wiki/Cyclic_executive
https://en.wikipedia.org/wiki/Resource_starvation
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Round-robin_(disambiguation)

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 11

Banker’s algorithm:

The Banker's algorithm, sometimes referred to as the detection algorithm, is a

resourceallocation and deadlock avoidance algorithm developed by EdsgerDijkstrathat tests

for safety by simulating the allocation of predetermined maximum possible amounts of all

resources, and then makes an "s-state" check to test for possible deadlock conditions for all

other pending activities, before deciding whether allocation should be allowed to continue.

The algorithm was developed in the design process for the operating system and

originally described (in Dutch) in EWD108. When a new process enters a system, it must

declare the maximum number of instances of each resource type that it may ever claim;

clearly, that number may not exceed the total number of resources in the system. Also, when

a process gets all its requested resources it must return them in a finite amount of time.

Page replacement algorithms LRU and FIFO:

In a computer operating system that uses paging for virtual memory management,

pagereplacement algorithms decide which memory pages to page out, sometimes called

swap out, or writeto disk, when a page of memory needs to be allocated. Page replacement

happens when a requested page is not in memory (page fault) and a free page cannot be used

to satisfy the allocation, either because there are none, or because the number of free pages is

lower than some threshold.

When the page that was selected for replacement and paged out is referenced again it

has to be paged in (read in from disk), and this involves waiting for I/O completion. This

determines the quality of the page replacement algorithm: the less time waiting for page-ins,

the better the algorithm. A page replacement algorithm looks at the limited information

about accesses to the pages provided by hardware, and tries to guess which pages should be

replaced to minimize the total number of page misses, while balancing this with the costs

(primary storage and processor time) of the algorithm itself. The page replacing problem is a

typical online problem from the competitive analysis perspective in the sense that the

optimal deterministic algorithm is known.

https://en.wikipedia.org/wiki/Resource_allocation
https://en.wikipedia.org/wiki/Resource_allocation
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Edsger_Dijkstra
https://en.wikipedia.org/wiki/Resource_(computer_science)
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Dutch_language
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Paging
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Page_(computer_memory)
https://en.wikipedia.org/wiki/Paging
https://en.wikipedia.org/wiki/Paging
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Online_problem

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 12

5. INTRODUCTION TO COMPILER DESIGN

A program for a computer must be built by combining these very simple commands into a

program in what is called machine language. Since this is a tedious and error prone process most

programming is, instead, done using a high-level programming language. This language can be very

different from the machine language that the computer can execute, so some means of bridging the

gap is required. This is where the compiler comes in. A compiler translates (or compiles) a program

written in a high-level programming language that is suitable for human programmers into the low-

level machine language that is required by computers.

Phases of a compiler:

Lexical analysis: This is the initial part of reading and analysing the program text: The text is read

and divided into tokens, each of which corresponds to a symbol in the programming language, e.g., a

variable name, keyword or number.

Syntax analysis: This phase takes the list of tokens produced by the lexical analysis and arranges

these in a tree-structure (called the syntax tree) that reflects the structure of the program. This phase is

often called parsing.

Type checking: This phase analyses the syntax tree to determine if the program violates certain

consistency requirements, e.g., if a variable is used but not declared or if it is used in a context that

does not make sense given the type of the variable, such as trying to use a boolean value as a function

pointer.

Intermediate code generation: The program is translated to a simple machineindependent

intermediate language.

Register allocation: The symbolic variable names used in the intermediate code are translated to

numbers, each of which corresponds to a register in the target machine code.

Machine code generation: The intermediate language is translated to assembly language (a textual

representation of machine code) for a specific machine architecture.

Assembly and linking: The assembly-language code is translated into binary representation and

addresses of variables, functions, etc., are determined.

Parsing:

A parser is a compiler or interpreter component that breaks data into smaller

elements for easy translation into another language. A parser takes input in the form of a

sequence of tokens or program instructions and usually builds a data structure in the form of

a parse tree or an abstract syntax tree.

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 13

A parser's main purpose is to determine if input data may be derived from the start

symbol of the grammar.

Syntax analyzers follow production rules defined by means of context-free grammar.

The way the production rules are implemented (derivation) divides parsing into two types:

top-down parsing and bottom-up parsing.

Top-Down Parsing:

When the parser starts constructing the parse tree from the start symbol and then tries

to transform the start symbol to the input, it is called top-down parsing.

• Recursive descent parsing: It is a common form of top-down parsing. It is called

recursive as it usesrecursive procedures to process the input. Recursive descent parsing

suffers from backtracking.

• Backtracking: It means, if one derivation of a production fails, the syntax analyzer

restarts the process using different rules of same production. This technique may process

the input string more than once to determine the right production.

Shift Reduce Parsing/Bottom up parsing:

Bottom-up parsing starts with the input symbols and tries to construct the parse tree

up to the start symbol. Bottom up parsing can be defined as an attempt to reduce the input

string ‘w’ to the start symbol of a grammar by tracing out the rightmost derivations of ‘w’ in

reverse.

Shift-reduce Parsing (Bottom-up Parsing)

Shift-reduce parsing attempts to construct a parse tree for an input string beginning at

the leaves and working up towards the root. In other words, it is a process of “reducing”

(opposite of deriving a symbol using a production rule) a string w to the start symbol of a

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 14

grammar. At every (reduction) step, a particular substring matching the RHS of a production

rule is replaced by the symbol on the LHS of the production.

A general form of shift-reduce parsing is LR (scanning from Left to right and using

Right-most derivation in reverse) parsing, which is used in a number of automatic parser

generators like Yacc, Bison, etc.

Intermediate code/ Three Address Code:

Three-address code (often abbreviated to TAC or 3AC) is an intermediate code used

by optimizing compilers to aid in the implementation of code-improving transformations.

Each TAC instruction has at most three operands and is typically a combination of

assignment and a binary operator. For example, t1 = t2 + t3. The name derives from the use

of three operands in these statements even though instructions with fewer operands may

occur.

Since three-address code is used as an intermediate language within compilers, the

operands will most likely not be concrete memory addresses or processor registers, but rather

symbolic addresses that will be translated into actual addresses during register allocation. It is

also not uncommon that operand names are numbered sequentially since three-address code

is typically generated by the compiler.

Example: One solution to the quadratic equation using three address code is as below.

x = (-b + sqrt(b^2 - 4*a*c)) / (2*a)

t1 = b * b

t2 = 4 * a

t3 = t2 * c

t4 = t1 - t3

t5 = sqrt(t4)

t6 = 0 - b

t7 = t5 + t6

t9 = t7 / t8

x = t9

t8 = 2 * a

https://en.wikipedia.org/wiki/Intermediate_language
https://en.wikipedia.org/wiki/Optimizing_compiler
https://en.wikipedia.org/wiki/Code-improving_transformation
https://en.wikipedia.org/wiki/Processor_registers
https://en.wikipedia.org/wiki/Register_allocation

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 15

6. SAMPLE LEX AND YACC PROGRAMS

Example LEX Program

A Simple program:To count the no of a’s in the given string

%{

int c=0;

%}

%%

[a]* {c++;}

. ;

%%

main()

{

 yylex();

 printf(“The no of a’s in the given string : %d”,c);

}

How to run this Program?

$lex filename.l

$cc lex.yy.c –ll

$./a.out

aaa

The no of a’s in the given string: 3

Example YACC Program

A Simple program: To print whether the input string is accepted or not.

%{

 #include<stdio.h>

%}

% token A B

%%

S:

 |A S B

%%

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 16

main()

{

 printf(“Enter the string\n”);

 yyparse();

 printf(“given string is accepted”);

}

yyerror()

{

 printf(“not accepted”);

 exit(0);

}

yylex()

{

 intch;

 ch=getchar();

 if(ch==’a’)

 return A;

 if(ch==’b’)

 return B;

 if(ch==’\n’)

 returnch;

}

How to run this program?

$ yaccfilename.y

$cc y.tab.c –ll

$./a.out

Enter the string

aabb

Given string is accepted

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 17

7. LAB PROGRAMS

1. a). Write a LEX program to recognize valid arithmetic expression. Identifiers in the

expression could be only integers and operators could be + and *. Count the identifiers

& operators present and print them separately.

%{

#include<stdio.h>

int opnd=0, oprt=0,flag=0;

char opnd1[10][10], oprt1[10][10];

%}

%%

[0-9]* {strcpy(opnd1[opnd],yytext); opnd++;}

[\+*] { strcpy(oprt1[oprt],yytext); oprt++;}

.{flag=1;}

%%

int main()

{

inti,j;

printf("Enter the expression ");

yylex();

if(((opnd-oprt)==1)&&flag==0)

{

printf("\n Identifiers are:%d\n Operators are:%d\n",opnd,oprt);

printf("\n Expression is Valid\n");

for(i=0;i<opnd;i++)

printf(“\nOperands are %s ”,opnd1[i]);

for(j=0;j<oprt;j++)

printf(“\nOperators are %s ”,oprt1[j]);

}

else

printf("\n Expression is Invalid\n");

return 1;

}

Output:

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 18

b). Write YACC program to evaluate arithmetic expression involving operators: +, -,*,

and /.

Lex Part

%{

#include “y.tab.h”

externyylval;

%}

%%

 [0-9]+ {yylval=atoi(yytext);return num;} /* convert the string to number

and send the value*/

[\+\-*\/] {returnyytext[0];}

[)] {return yytext[0];}

[(] {return yytext[0];}

. {;}

“\n” {return 0;}

%%

YACC Part

%{

#include<stdio.h>

#include<stdlib.h>

%}

%token num

%left ‘+’ ‘-‘

%left ‘*’ ‘/’

%%

input:exp {printf("%d\n",$$);exit(0);}

exp:exp’+’exp {$$=$1+$3;}

|exp’-‘exp {$$=$1-$3;}

|exp’*’exp {$$=$1*$3;}

|exp’/’exp { if($3==0){printf("Divide by Zero error\n");exit(0);}

else

$$=$1/$3;}

|’(‘exp’)’ {$$=$2;}

|num {$$=$1;};

%%

intyyerror()

{

printf("error");

exit(0);

}

int main()

{

printf("Enter an expression:\n");

yyparse();

}

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 19

Output:

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 20

2. Develop, Implement and Execute a program using YACC tool to recognize all strings

ending with b preceded by n a’s using the grammar anb (note: input n value).

Lex Part

%{

#include "y.tab.h"

#include<stdio.h>

#include<string.h>

#define N 3

%}

%%

a {if(strlen(yytext)==N) return A;}

b {return B;}

%%

YACC Part

%{

#include<stdio.h>

%}

%token A B

%%

input:s'\n' {printf("Successful Grammar\n");exit(0);}

s: A s1 B

s1:

| A s1

%%

main()

{

printf(“Program to check the

grammar anb\n”);

printf("Enter A String\n");

yyparse();

printf(“\nString is accepted by the

grammar\n”);

exit(0);

}

intyyerror()

{

printf("String is not accepted\n");

}

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 21

Output:

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 22

3. Design, develop and implement YACC/C program to construct Predictive / LL(1)

Parsing Table for the grammar rules: A→aBa , B →bB | . Use this table to parse the

sentence: abba$.

#include<stdlib.h>

#include<string.h>

#include<stdio.h>

char prod[3][10]={"A->aBa","B->bB","B->@"}, input[10],stack[25];

int top=-1; int j=0,k,l;

void push(char item)

{

stack[++top]=item;

}

void pop()

{

top=top-1;

}

void display()

{

int j; for(j=top;j>=0;j--)

printf("%c",stack[j]);

}

void stackpush(char p)

{

 if(p=='A')

 {

 pop();

 for(j=strlen(prod[0])-1;j>=3;j--)

 push(prod[0][j]);

 }

 else

 {

 pop();

 for(j=strlen(prod[1])-1;j>=3;j--)

 push(prod[1][j]);

 }

}

void main()

{

 char c;

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 23

 int i;

 printf("first(A)={a}\t");

 printf("follow(A)={$}\n");

 printf("first(B)={b,@}\t");

 printf("follow(B)={a}\n\n");

 printf("\t a \t b \t $ \n");

 printf("A\t%s\n",prod[0]);

 printf("B\t%s\t%s\n",prod[2],prod[1]);

 printf("enter the input string terminated with $ to parse:-");

 scanf("%s",input);

for(i=0;input[i]!='\0';i++)

{

 if((input[i]!='a')&&(input[i]!='b')&&(input[i]!='$'))

 {

 printf("invalid string");

 exit(0);

 }

}

if(input[i-1]!='$')

{

 printf("\n\nInput string entered without end marker $");

 exit(0);

}

push('$');

push('A');

i=0;

printf("\n\n");

printf("stack\tInput\taction");

printf("\n...........\n");

while(i!=strlen(input)&&stack[top]!='$')

{

 printf("\n");

 for(l=top;l>=0;l--)

 printf("%c",stack[l]);

 printf("\t");

 for(l=i;l<strlen(input);l++)

 printf("%c",input[l]);

 printf("\t");

if(stack[top]=='A')

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 24

{

 printf("A->aBa");

 stackpush('A');

}

else if(stack[top]=='B')

{

 if(input[i]!='b')

 {

 printf("B->@");

 printf("\t matched @");

 pop();

 }

 else

 {

 printf("B->bB");

 stackpush('B');

 }

}

else

 {

 if(stack[top]==input[i])

 {

 printf("pop%c",input[i]);

 printf("\tmatched %c",input[i]);

 pop();

 i++;

 }

 else

 break;

 }

}

if(stack[top]=='$' && input[i]=='$')

{

 printf("\n\t");

 printf("\nValid string Accepted\n");

}

else

printf("\nInvalid string rejected\n");

}

Output:

first(A)={a} follow(A)={$}

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 25

first(B)={b,@} follow(B)={a}

a b $

A A->aBa

B B->@ B->bB

enter the input string terminated with $ to parse:-abba$

stack Input action

A$ abba$ A->aBa

aBa$ abba$ popa matched a

Ba$ bba$ B->bB

bBa$ bba$ popb matched b

Ba$ ba$ B->bB

bBa$ ba$ popb matched b

Ba$ a$ B->@ matched @

a$ a$ popa matched a

$ $

Valid string Accepted

Output:

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 26

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 27

4. Design, develop and implement YACC/C program to demonstrate Shift Reduce

Parsing technique for the grammar rules: E →E+T | T, T →T*F | F, F →(E) | id and

parse the sentence: id + id * id.

#include<stdio.h>

#include<conio.h>

#include<string.h>

int k=0,z=0,i=0,j=0,c=0;

char a[16],ac[20],stk[15],act[10];

void check();

void main()

{

puts("GRAMMAR is E->E+E \n E->E*E \n E->(E) \n E->id");

puts("enter input string ");

gets(a);

c=strlen(a);

strcpy(act,"SHIFT->");

puts("stack \t input \t action");

for(k=0,i=0; j<c; k++,i++,j++)

{

if(a[j]=='i' && a[j+1]=='d')

{

stk[i]=a[j];

stk[i+1]=a[j+1];

stk[i+2]='\0';

a[j]=' ';

a[j+1]=' ';

printf("\n$%s\t%s$\t%sid",stk,a,act);

check();

}

else

{

stk[i]=a[j];

stk[i+1]='\0';

a[j]=' ';

printf("\n$%s\t%s$\t%ssymbols",stk,a,act);

check();

}

}

getch();

}

void check()

{

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 28

strcpy(ac,"REDUCE TO E");

for(z=0; z<c; z++)

if(stk[z]=='i' &&stk[z+1]=='d')

{

stk[z]='E';

stk[z+1]='\0';

printf("\n$%s\t%s$\t%s",stk,a,ac);

j++;

}

for(z=0; z<c; z++)

if(stk[z]=='E' &&stk[z+1]=='+' &&stk[z+2]=='E')

{

stk[z]='E';

stk[z+1]='\0';

stk[z+2]='\0';

printf("\n$%s\t%s$\t%s",stk,a,ac);

i=i-2;

}

for(z=0; z<c; z++)

if(stk[z]=='E' &&stk[z+1]=='*' &&stk[z+2]=='E')

{

stk[z]='E';

stk[z+1]='\0';

stk[z+1]='\0';

printf("\n$%s\t%s$\t%s",stk,a,ac);

i=i-2;

}

for(z=0; z<c; z++)

if(stk[z]=='(' &&stk[z+1]=='E' &&stk[z+2]==')')

{

stk[z]='E';

stk[z+1]='\0';

stk[z+1]='\0';

printf("\n$%s\t%s$\t%s",stk,a,ac);

i=i-2;

}

}

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 29

Output:

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 30

5. Design, develop and implement a C/Java program to generate the machine code using

Triplesfor the statement A = -B * (C +D) whose intermediate code in three-address

form:

T1 = -B

T2 = C + D

T3 = T1 + T2

A = T3

#include<stdio.h>

#include<stdlib.h>

#include<ctype.h>

char op[2],arg1[5],arg2[5],result[5];

void main()

{

FILE *fp1,*fp2; fp1=fopen("input.txt","r"); fp2=fopen("output.txt","w");

while(!feof(fp1))

{

fscanf(fp1,"%s%s%s%s",result,arg1,op,arg2);

if(strcmp(op,"+")==0)

{

fprintf(fp2,"\nMOV R0,%s",arg1);

fprintf(fp2,"\nADD R0,%s",arg2);

fprintf(fp2,"\nMOV %s,R0",result);

}

if(strcmp(op,"*")==0)

{

fprintf(fp2,"\nMOV R0,%s",arg1);

fprintf(fp2,"\nMUL R0,%s",arg2);

fprintf(fp2,"\nMOV %s,R0",result);

}

if(strcmp(op,"-")==0)

{

fprintf(fp2,"\nMOV R0,%s",arg1);

fprintf(fp2,"\nSUB R0,%s",arg2);

fprintf(fp2,"\nMOV %s,R0",result);

}

if(strcmp(op,"/")==0)

{

fprintf(fp2,"\nMOV R0,%s",arg1);

fprintf(fp2,"\nDIV R0,%s",arg2);

fprintf(fp2,"\nMOV %s,R0",result);

}

if(strcmp(op,"=")==0)

{

fprintf(fp2,"\nMOV R0,%s",arg1);

fprintf(fp2,"\nMOV %s,R0",result);

}

}

fclose(fp1);

fclose(fp2);

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 31

getch();

}

Input.txt file

Output:

MOV R0, -B

MOV T1, R0

MOV R0, C

ADD R0, D

MOV T2, R0

MOV R0, T1

MUL R0, T2

MOV T3, R0

MOV R0, T3

MOV A, R0

T1 – B = ?

T2 C + D

T3 T1 * T2

A T3 = ?

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 32

6.a) Write a LEX program to eliminate comment lines in a C program and copy the

resulting program into a separate file.

%{

 #include<stdio.h>

intcc=0;

%}

%%

“/*”[^/*]*”*/” {cc++;}

“/*”.*”*/” {cc++;}

%%

main()

{

 printf(“Program to eliminate comment lines\n”);

yyin=fopen(“input.c”,”r”);

yyout=fopen(“output.c”,”w”);

yylex();

fclose(yyin);

fclose(yyout);

printf("\n Number of comment lines are %d\n",cc);

}

Output:

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 33

b). Write YACC program to recognize valid identifier, operators and keywords in the

given text (C program) file.

Lex File

%{

#include <stdio.h>

#include<string.h>

#include "y.tab.h"

char id[100], key[100], op[100];

intidcount=0,keycount=0,opcount=0,flag=1;

%}

%%

int|char|float|double {strcat(key,yytext); strcat(key,” “); keycount++; flag=1; return

key;}

main|if|else|for|while|do {strcat(key,yytext); strcat(key,” “); keycount++; flag=1; return

key;}

[\+\-*\/] {strcat(op,yytext); strcat(key,” ”); opcount++; return op;}

 [a-zA-Z_][a-zA-Z0-9_]*[,;=\[] {if(flag==1) {strcat(id,yytext,yyleng-1); strcat(id,” ”);

idcount++; return id;}}

\n {flag=0;}

“print” ;

. ;

%%

Yacc File

%{

#include <stdio.h>

#include <stdlib.h>

extern char op[100], id[100], key[100];

externintopcount, idcount, keycount;

%}

%token KEY ID OP

%%

input: KEY input

| OP input

|ID input

%%

intmain()

{

 printf(“Program to count and print OP, KEY, ID\n”);

 yyparse();

 printf(“Number of keywords are %d\n”,keycount);

 printf(“Keywords are %s\n”,key);

 printf(“Number of identifiers are %d\n”,idcount);

 printf(“Identifiers are %s\n”,id);

printf(“Number of operators are %d\n”,opcount);

 printf(“Operators are %s\n”,op);

}

yyerror()

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 34

{

 return -1;

}

Output:
Input file

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 35

7. Design, develop and implement a C/C++/Java program to simulate the working of

Shortest remaining time and Round Robin (RR) scheduling algorithms. Experiment

with different quantum sizes for RR algorithm.

#include<stdio.h>

struct proc

{

int id;

int arrival;

int burst;

int rem;

int wait;

int finish;

int turnaround;

float ratio;

}process[10]; //structure to hold the process information

struct proc temp;

int no;

int chkprocess(int);

int nextprocess();

void roundrobin(int, int, int[], int[]);

void srtf(int);

main()

{

intn,tq,choice;

intbt[10],st[10],i,j,k;

for(; ;)

{

printf("Enter the choice \n");

printf(" 1. Round Robin\n 2.SRT\n 3. Exit \n");

scanf("%d",&choice);

switch(choice)

{

case 1:
printf("Round Robin scheduling algorithm\n");

printf("Enter number of processes:\n");

scanf("%d",&n);

printf("Enter burst time for sequences:");

for(i=0;i<n;i++)

{

scanf("%d",&bt[i]);

st[i]=bt[i]; //service time

}

printf("Enter time quantum:");

scanf("%d",&tq);

roundrobin(n,tq,st,bt);

break;

case 2:

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 36

printf("\n \n ---SHORTEST REMAINING TIME NEXT---\n \n

"); printf("\n \n Enter the number of processes: "); scanf("%d",

&n);

srtf(n);

break;

case 3: exit(0);

}// end of switch

}// end of for

}//end of main()

voidroundrobin(intn,inttq,intst[],intbt[])

{

int time=0;

int tat[10],wt[10],i,count=0,swt=0,stat=0,temp1,sq=0,j,k;

floatawt=0.0,atat=0.0;

while(1)

{

for(i=0,count=0;i<n;i++)

{

temp1=tq;

if(st[i]==0) // when service time of a process equals zero then//count value is

incremented

{

count++;

continue;

}

if(st[i]>tq) // when service time of a process greater than time//quantum

then time

st[i]=st[i]-tq; //quantum value subtracted from service time

else

if(st[i]>=0)

{

temp1=st[i]; // temp1 stores the service time of a process

st[i]=0; // making service time equals 0

}

sq=sq+temp1; // utilizing temp1 value to calculate turnaround time

tat[i]=sq; // turn around time

} //end of for

if(n==count) // it indicates all processes have completed their task

because the count value

break; // incremented when service time equals 0

} //end of while

for(i=0;i<n;i++) // to calculate the wait time and turnaround time of each process

{

wt[i]=tat[i]-bt[i]; // waiting time calculated from the turnaround time burst time

swt=swt+wt[i]; // summation of wait time

stat=stat+tat[i]; // summation of turnaround time

}

awt=(float)swt/n; // average wait time

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 37

atat=(float)stat/n; // average turnaround time

printf("Process_no Burst time Wait time Turn around time\n");

for(i=0;i<n;i++)

printf("%d\t\t%d\t\t%d\t\t%d\n",i+1,bt[i],wt[i],tat[i]);

printf("Avg wait time is %f\n Avgturn around time is %f\n",awt,atat);

}// end of Round Robin

intchkprocess(int s) // function to check process remaining time is zero or not

{

int i;

for(i = 1; i <= s; i++)

{

if(process[i].rem != 0)

return 1;

}

return 0;

} // end of chkprocess

intnextprocess() // function to identify the next process to be executed

{

int min, l, i;

min = 32000; //any limit assumed

for(i = 1; i <= no; i++)

{

if(process[i].rem!=0 && process[i].rem < min)

{

min = process[i].rem;

l = i;

}

}

return l;

} // end of nextprocess

voidsrtf(int n)

{

inti,j,k,time=0;

floattavg,wavg;

for(i = 1; i <= n; i++)

{

process[i].id = i;

printf("\n\nEnter the arrival time for process %d: ", i); scanf("%d",

&(process[i].arrival));

printf("Enter the burst time for process %d: ", i);

scanf("%d", &(process[i].burst));

process[i].rem = process[i].burst;

}

for(i = 1; i <= n; i++)

{

for(j = i + 1; j <= n; j++)

{

if(process[i].arrival > process[j].arrival) // sort arrival time of aprocess

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 38

{

temp = process[i];

process[i] = process[j];

process[j] = temp;

}

}

}

no = 0;

j = 1;

while(chkprocess(n) == 1)

{

if(process[no + 1].arrival == time)

{

while(process[no+1].arrival==time)

no++;

if(process[j].rem==0)

process[j].finish=time;

j = nextprocess();

}

if(process[j].rem != 0) // to calculate the waiting time of a process

{

process[j].rem--;

for(i = 1; i <= no; i++)

{

if(i != j && process[i].rem != 0)

process[i].wait++;

}

}

else

{

process[j].finish = time;

j=nextprocess();

time--;

k=j;

}

time++;

}

process[k].finish = time;

printf("\n\n\t\t\t---SHORTEST REMAINING TIME FIRST---");

printf("\n\n Process Arrival Burst Waiting Finishing turnaround Tr/Tb\n");

printf("%5s %9s %7s %10s %8s %9s\n\n", "id", "time", "time", "time", "time",

"time");

for(i = 1; i <= n; i++)

{
process[i].turnaround = process[i].wait + process[i].burst; // calc of turnaround

process[i].ratio = (float)process[i].turnaround / (float)process[i].burst;

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 39

printf("%5d %8d %7d %8d %10d %9d %10.1f ", process[i].id,

process[i].arrival, process[i].burst, process[i].wait, process[i].finish,

process[i].turnaround, process[i].ratio);

tavg=tavg+ process[i].turnaround; //summation of turnaround time

wavg=wavg+process[i].wait; // summation of waiting time

printf("\n\n");

}

tavg=tavg/n; // average turnaround time

wavg=wavg/n; // average wait time

printf("tavg=%f\t wavg=%f\n",tavg,wavg); }// end of srtf

Output:

Enter the choice

1) Round Robin 2) SRT

3) Exit

1

Round Robin scheduling algorithm

Enter number of processes:3

Enter burst time for sequences:24

3

3

Enter time quantum:4

Process_no Burst time Wait time Turnaround time

1 24 6 30

2 3 4 7

3 3 7 10

Avg wait time is 5.666667

Avg turnaround time is 15.666667

Enter the choice

1) Round Robin

2) SRT

3) Exit

2

---SHORTEST REMAINING TIME NEXT---

Enter the number of processes: 4

Enter the arrival time for process 1: 0

Enter the burst time for process 1: 8

Enter the arrival time for process 2: 1

Enter the burst time for process 2: 4

Enter the arrival time for process 3: 2

Enter the burst time for process 3: 9

Enter the arrival time for process 4: 3

Enter the burst time for process 4: 5

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 40

1 24 6 30

2 3 4 7

3 3 7 10

---SHORTEST REMAINING TIME FIRST---

Enter the number of processes: 4

Enter the arrival time for process 1: 0

Enter the burst time for process 1: 8

Enter the arrival time for process 2: 1

Enter the burst time for process 2: 4

Enter the arrival time for process 3: 2

Enter the burst time for process 3: 9

Enter the arrival time for process 4: 3

Enter the burst time for process 4: 5

---SHORTEST REMAINING TIME NEXT---

Process Arrival Burst Waiting Finishing turnaround Tr/Tb

id time time time time time time

1 0 8 9 17 17 2.1

2 1 4 0 5 4 1.0

3 2 9 15 26 24 2.7

4 3 5 2 10 7 1.4

tavg=13.000000

wavg=6.500000

Using OpenMP

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 41

8. Design, develop and implement a C/C++/Java program to implement Banker’s

algorithm. Assume suitable input required to demonstrate the results.

#include <stdio.h>

#include <stdlib.h>

int main()

{

int Max[10][10], need[10][10], alloc[10][10], avail[10], completed[10], safeSequence[10];

int p, r, i, j, process, count;

count = 0;

printf("Enter the no of processes : ");

scanf("%d", &p);

for(i = 0; i< p; i++)

completed[i] = 0;

printf("\n\nEnter the no of resources : ");

scanf("%d", &r);

printf("\n\nEnter the Max Matrix for each process : ");

for(i = 0; i < p; i++)

{

printf("\nFor process %d : ", i + 1);

for(j = 0; j < r; j++)

scanf("%d", &Max[i][j]);

}

printf("\n\nEnter the allocation for each process : ");

for(i = 0; i < p; i++)

{

printf("\nFor process %d : ",i + 1);

for(j = 0; j < r; j++)

scanf("%d", &alloc[i][j]);

}

printf("\n\nEnter the Available Resources : ");

for(i = 0; i < r; i++)

scanf("%d", &avail[i]);

for(i = 0; i < p; i++)

for(j = 0; j < r; j++)

need[i][j] = Max[i][j] - alloc[i][j];

do

{

printf("\n Max matrix:\tAllocation matrix:\n");

for(i = 0; i < p; i++)

{

for(j = 0; j < r; j++)

printf("%d ", Max[i][j]);

printf("\t\t");

for(j = 0; j < r; j++)

printf("%d ", alloc[i][j]);

printf("\n");

}

process = -1;

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 42

for(i = 0; i < p; i++)

{

if(completed[i] == 0)//if not completed

{

process = i ;

for(j = 0; j < r; j++)

{

if(avail[j] < need[i][j])

{

process = -1;

break;

}

}

}

if(process != -1)

break;

}

if(process != -1)

{

printf("\nProcess %d runs to completion!", process + 1);

safeSequence[count] = process + 1;

count++;

for(j = 0; j < r; j++)

{

avail[j] += alloc[process][j];

alloc[process][j] = 0;

Max[process][j] = 0;

completed[process] = 1;

}

}

}

while(count != p && process != -1);

if(count == p)

{

printf("\nThe system is in a safe state!!\n");

printf("Safe Sequence : < ");

for(i = 0; i < p; i++)

printf("%d ", safeSequence[i]);

printf(">\n");

}

else

printf("\nThe system is in an unsafe state!!");

}

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 43

Output:

Enter the no of processes : 5

Enter the no of resources : 3

Enter the Max Matrix for each process :

For process 1 : 7

5

3

For process 2 : 3

2

2

For process 3 : 7

0

2

For process 4 : 2

2

2

For process 5 : 4

3

3

Enter the allocation for each process :

For process 1 : 0

1

0

For process 2 : 2

0

0

For process 3 : 3

0

2

For process 4 : 2

1

1

For process 5 : 0

0

2

Enter the Available Resources : 3

3

2

Max matrix: Allocation matrix:

7 5 3 0 1 0

3 2 2 2 0 0

7 0 2 3 0 2

2 2 2 2 1 1

4 3 3 0 0 2

Process 2 runs to completion!

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 44

Max matrix: Allocation matrix:

7 5 3 0 1 0

0 0 0 0 0 0

7 0 2 3 0 2

2 2 2 2 1 1

4 3 3 0 0 2

Process 3 runs to completion!

Max matrix: Allocation matrix:

7 5 3 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

2 2 2 2 1 1

4 3 3 0 0 2

Process 4 runs to completion!

Max matrix: Allocation matrix:

7 5 3 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

4 3 3 0 0 2

Process 1 runs to completion!

Max matrix: Allocation matrix:

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

4 3 3 0 0 2

Process 5 runs to completion!

The system is in a safe state!!

Safe Sequence: < 2 3 4 1 5 >

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 45

9. Design, develop and implement a C/C++/Java program to implement page

replacement algorithms LRU and FIFO. Assume suitable input required to demonstrate

the results.

#include<stdio.h>

#include<stdlib.h>

void FIFO(char [],char [],int,int);

voidlru(char [],char [],int,int);

void opt(char [],char [],int,int);

int main()

{

intch,YN=1,i,l,f;

char F[10],s[25];

printf("\n\n\tEnter the no of empty

frames: "); scanf("%d",&f);

printf("\n\n\tEnter the length of the string: ");

scanf("%d",&l);

printf("\n\n\tEnter the string: ");

scanf("%s",s);

for(i=0;i<f;i++)

F[i]=-1;

do

{

printf("\n\n\t*********** MENU ***********");

printf("\n\n\t1:FIFO\n\n\t2:LRU \n\n\t4:EXIT"); printf("\n\n\tEnter your

choice: ");

scanf("%d",&ch);

switch(ch)

{

case 1:

for(i=0;i<f;i++)

{

F[i]=-1;

}

FIFO(s,F,l,f);

break;

case 2:

for(i=0;i<f;i++)

{

F[i]=-1;

}

lru(s,F,l,f);

break;

case 4:

exit(0);

}

printf("\n\n\tDo u want to continue IF YES PRESS 1\n\n\tIF NO PRESS 0 : ");

scanf("%d",&YN);

}while(YN==1);return(0);

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 46

}

//FIFO

void FIFO(char s[],char F[],intl,int f)

{

inti,j=0,k,flag=0,cnt=0;

printf("\n\tPAGE\t FRAMES\t FAULTS");

for(i=0;i<l;i++)

{

for(k=0;k<f;k++)

{

if(F[k]==s[i])

flag=1;

}

if(flag==0)

{

printf("\n\t%c\t",s[i]);

F[j]=s[i];

j++;

for(k=0;k<f;k++)

{

printf(" %c",F[k]);

}

printf("\tPage-fault%d",cnt);

cnt++;

}

else

{

flag=0;

printf("\n\t%c\t",s[i]);

for(k=0;k<f;k++)

{

printf(" %c",F[k]);

}

printf("\tNo page-fault");

}

if(j==f)

j=0;

}

}

//LRU

voidlru(char s[],char F[],intl,int f)

{

inti,j=0,k,m,flag=0,cnt=0,top=0;

printf("\n\tPAGE\t FRAMES\t FAULTS");

for(i=0;i<l;i++)

{

for(k=0;k<f;k++)

{

if(F[k]==s[i])

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 47

{

flag=1;

break;

}

}

printf("\n\t%c\t",s[i]);

if(j!=f && flag!=1)

{

F[top]=s[i];

j++;

if(j!=f)

top++;

}

else

{

if(flag!=1)

{

for(k=0;k<top;k++)

{

F[k]=F[k+1];

}

F[top]=s[i];

}

if(flag==1)

{

for(m=k;m<top;m++)

{

F[m]=F[m+1];

}

F[top]=s[i];

}

}

for(k=0;k<f;k++)

{

printf(" %c",F[k]);

}

if(flag==0)

{

printf("\tPage-fault%d",cnt);

cnt++;

}

else

printf("\tNo page fault");

flag=0;

}

}

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 48

Output:

Enter the no of empty frames: 3

Enter the length of the string: 5

Enter the string: hello

*********** MENU ***********

1:FIFO

2:LRU

4:EXIT

Enter your choice: 1

PAGE FRAMES FAULTS

H h Page-fault 0

E h e Page-fault 1

L h e l Page-fault 2

L h e l No page-fault

O o e l Page-fault 3

Do u want to continue IF YES PRESS 1

IF NO PRESS 0 : 1

*********** MENU ***********

1:FIFO

2:LRU

4:EXIT

Enter your choice: 2

PAGE FRAMES FAULTS

H h Page-fault 0

E h e Page-fault 1

L h e l Page-fault 2

L h e l No page fault

O e l o Page-fault 3

Do u want to continue IF YES PRESS 1

IF NO PRESS 0 : 1

*********** MENU ***********

1:FIFO

2:LRU

4:EXIT

Enter your choice: 4

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 49

8. VIVA QUESTIONS

1. Define system software.

System software is computer software designed to operate the computer hardware

and to provide a platform for running application software. Eg: operating system,

assembler, and loader.

2. What is an Assembler?

Assembler for an assembly language, a computer program to translate between lower-

level representations of computer programs.

3. Explain lex and yacc tools

a. Lex: - scanner that can identify those tokens

b. Yacc: - parser.yacc takes a concise description of a grammar and produces a

C routine that can parse that grammar.

4. Explain yyleng?

yyleng-contains the length of the string our lexer recognizes.

5. What is a Parser?

A Parser for a Grammar is a program which takes in the Language string as it's input

and produces either a corresponding Parse tree or an Error.

6. What is the Syntax of a Language?

The Rules which tells whether a string is a valid Program or not are called the Syntax.

7. What is the Semantics of a Language?

The Rules which gives meaning to programs are called the Semantics of a Language.

8. What are tokens?

When a string representing a program is broken into sequence of substrings, such

that each substring represents a constant, identifier, operator, keyword etc of the

language, these substrings are called the tokens of the Language.

9. What is the Lexical Analysis?

The Function of a lexical Analyzer is to read the input stream representing the

Source program, one character at a time and to translate it into valid tokens.

10. How can we represent a token in a language?

The Tokens in a Language are represented by a set of Regular Expressions. A

regular expression specifies a set of strings to be matched. It contains text characters

and operator characters. The Advantage of using regular expression is that a

recognizer can be automatically generated.

11. How are the tokens recognized?

The tokens which are represented by an Regular Expressions are recognized in an

input string by means of a state transition Diagram and Finite Automata.

12. Are Lexical Analysis and Parsing two different Passes?

These two can form two different passes of a Parser. The Lexical analysis can store all

the recognized tokens in an intermediate file and give it to the Parser as an input.

However it is more convenient to have the lexical Analyzer as a co routine or a

subroutine which the Parser calls whenever it requires a token.

13. What are the Advantages of using Context-Free grammars?

a. It is precise and easy to understand.

b. It is easier to determine syntactic ambiguities and conflicts in the grammar.

14. If Context-free grammars can represent every regular expression, why do one

needs R.E at all?

a. Regular Expression are Simpler than Context-free grammars.

System Software Laboratory - 18CSL66 VI Semester CSE

Dept. of CSE, CIT, Gubbi Page 50

b. It is easier to construct a recognizer for R.E than Context-Free grammar.

c. Breaking the Syntactic structure into Lexical & non-Lexical parts provide

better front end for the Parser.

d. R.E are most powerful in describing the lexical constructs like identifiers,

keywords etc while Context-free grammars in representing the nested or

block structures of the Language.

15. What are the Parse Trees?

Parse trees are the Graphical representation of the grammar which filters out the

choice for replacement order of the Production rules.

16. What are Terminals and non-Terminals in a grammar?

Terminals:- All the basic symbols or tokens of which the language is composed of

are called Terminals. In a Parse Tree the Leafs represents the Terminal Symbol.

Non-Terminals:- These are syntactic variables in the grammar which represents a set

of strings the grammar is composed of. In a Parse tree all the inner nodes represents

the Non-Terminal symbols.

17. What are Ambiguous Grammars?

A Grammar that produces more than one Parse Tree for the same sentences or the

Production rules in a grammar is said to be ambiguous.

18. What is bottom up Parsing?

The Parsing method is which the Parse tree is constructed from the input language

string beginning from the leaves and going up to the root node.

Bottom-Up parsing is also called shift-reduce parsing due to its implementation. The

YACC supports shift-reduce parsing.

19. What is the need of Operator precedence?

The shift reduce Parsing has a basic limitation. Grammars which can represent a

left-sentential parse tree as well as right-sentential parse tree cannot be handled by

shift reduce parsing. Such a grammar ought to have two non-terminals in the

production rule. So the Terminal sandwiched between these two non-terminals must

have some associability and precedence. This will help the parser to understand

which non-terminal would be expanded first.

20. What is exit status command?

Exit 0- return success, command executed successfully.

Exit 1 – return failure.

21. Define API’s

An application programming interface (API) is a source code based specification

intended to be used as an interface by software components to communicate with

each other.

