Department of Mechanical Engineering

Heat & Mass Transfer Laboratory

10MEL67

B.E - VI Semester

Lab Manual 2015-16

Name : __

USN : ___

Batch : _________________ Section : _______________
Department of Mechanical Engineering

Heat & Mass Transfer Lab Manual

Version 1.0

February 2016

Prepared by:
Ms. Sushma S
Assistant Professor

Reviewed by:
Mr. Faheem Akhtar
Assistant Professor

Approved by:
Mr. Giridhar S Kulkarni
Associate Professor & Dean (Academics),
Dept. of Mechanical Engineering.
HEAT & MASS TRANSFER LABORATORY - SYLLABUS

Subject Code: 10MEL67
IA Marks : 25
Hours/Week : 03
Exam Hours : 03
Total Hours : 42
Exam Marks : 50

PART-A:

1. Determination of Thermal Conductivity of a Metal Rod.
3. Determination of Effectiveness on a Metallic fin.

 21 Hours

PART-B:

1. Determination of Steffan Boltzman Constant.
2. Determination of LMDT and Effectiveness in a Parallel Flow and Counter Flow Heat Exchangers
3. Experiments on Boiling of Liquid and Condensation of Vapour
4. Performance Test on a Vapour Compression Refrigeration.
5. Performance Test on a Vapour Compression Air - Conditioner
6. Experiment on Transient Conduction Heat Transfer

 21 Hours

Scheme of Examination:

One Question from Part A - 20 Marks (05 Write up +15)
One Question from Part B - 20 Marks (05 Write up +15)
Viva-Voce - 10 Marks

Total 50 Marks
INDEX PAGE

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name of the Experiment</th>
<th>Date</th>
<th>Conduction</th>
<th>Repetition</th>
<th>Submission of Record</th>
<th>Manual Marks (Max. 25)</th>
<th>Record Marks (Max. 10)</th>
<th>Signature (Student)</th>
<th>Signature (Faculty)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Average

Note: If the student fails to attend the regular lab, the experiment has to be completed in the same week. Then the manual/observation and record will be evaluated for 50% of maximum marks.
Course Objectives & Outcomes.

The objectives of Heat & Mass Transfer laboratory is

- to demonstrate the concepts discussed in the Heat & Mass Transfer course.
- to experimentally determine thermal conductivity and heat transfer coefficient through various materials.
- to experimentally measure effectiveness of heat exchangers.
- to conduct performance tests on refrigeration & air conditioning systems.

The expected outcome of Heat & Mass Transfer lab is that the students will be able

- to practically relate to concepts discussed in the Heat & Mass Transfer course.
- to conduct various experiments to determine thermal conductivity and heat transfer coefficient in various materials.
- to select appropriate materials & designs for improving effectiveness of heat transfer.
- to conduct performance tests and thereby improve effectiveness of heat exchangers.
- to conduct performance tests and thereby improve effectiveness of refrigeration and air conditioning systems.
General Instructions to the Students.

✓ Laboratory uniform, shoes & safety glasses are compulsory in the lab.
✓ Do not touch anything with which you are not completely familiar. Carelessness may not only break the valuable equipment in the lab but may also cause serious injury to you and others in the lab.
✓ Please follow instructions precisely as instructed by your supervisor. Do not start the experiment unless your setup is verified & approved by your supervisor.
✓ Do not leave the experiments unattended while in progress.
✓ Do not crowd around the equipment’s & run inside the laboratory.
✓ During experiments material may fail and disperse, please wear safety glasses and maintain a safe distance from the experiment.
✓ If any part of the equipment fails while being used, report it immediately to your supervisor. Never try to fix the problem yourself because you could further damage the equipment and harm yourself and others in the lab.
✓ Keep the work area clear of all materials except those needed for your work and cleanup after your work.
<table>
 <thead>
 <tr>
 <th>Sl. No</th>
 <th>Particulars</th>
 <th>Page No</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>1</td>
 <td>Thermal conductivity of metal rod apparatus</td>
 <td>01</td>
 </tr>
 <tr>
 <td>2</td>
 <td>Composite wall apparatus</td>
 <td>07</td>
 </tr>
 <tr>
 <td>3</td>
 <td>Heat transfer through pin - fin</td>
 <td>11</td>
 </tr>
 <tr>
 <td>4</td>
 <td>Natural convection</td>
 <td>19</td>
 </tr>
 <tr>
 <td>5</td>
 <td>Heat transfer through forced convection</td>
 <td>23</td>
 </tr>
 <tr>
 <td>6</td>
 <td>Emissivity measurement</td>
 <td>29</td>
 </tr>
 <tr>
 <td>7</td>
 <td>Stefan Boltzmann apparatus</td>
 <td>33</td>
 </tr>
 <tr>
 <td>8</td>
 <td>Parallel flow & Counter flow heat exchanger</td>
 <td>37</td>
 </tr>
 <tr>
 <td>9</td>
 <td>Filmwise and Dropwise condensation</td>
 <td>49</td>
 </tr>
 <tr>
 <td>10</td>
 <td>Performance test on vapor compression refrigeration test rig</td>
 <td>57</td>
 </tr>
 <tr>
 <td>11</td>
 <td>Air conditioning test rig</td>
 <td>63</td>
 </tr>
 <tr>
 <td>12</td>
 <td>Transient heat conduction</td>
 <td>71</td>
 </tr>
 <tr>
 <td>13</td>
 <td>Critical heat flux apparatus</td>
 <td>79</td>
 </tr>
 <tr>
 <td>14</td>
 <td>Viva questions</td>
 <td>81</td>
 </tr>
 <tr>
 <td>15</td>
 <td>References</td>
 <td>85</td>
 </tr>
 </tbody>
</table>
Experiment -1

SPECIFICATION:

THERMAL CONDUCTIVITY OF METAL ROD:
Metal rod: Copper
Total length of the metal bar : 400 mm
Effective length : 320 mm
Diameter of the Metal rod : 35 mm
Insulation: Chalk powder
Distance between two consecutive thermocouple : 60 mm(T_1 to T_5)
Radial distance of the thermocouple in the insulating Shell:
Inner radians \(r_i = 42.5 \text{ mm} + (35/2) \)
Outer radians \(r_o = 55 \text{ mm} + (35/2) \)

TABULAR COLUMN:

<table>
<thead>
<tr>
<th>Sl No.</th>
<th>Flow Rate of water</th>
<th>Water Temp.</th>
<th>Temp. of Metal Rod</th>
<th>Temp. in Insulating shall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CC/min Kg/sec</td>
<td>T_10 T_11</td>
<td>T_1 T_2 T_3 T_4 T_5</td>
<td>T_6 T_7 T_8 T_9</td>
</tr>
</tbody>
</table>

RESULTS (STANDARD):

<table>
<thead>
<tr>
<th>Metal</th>
<th>Thermal Conductivity W/m °C/k</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Copper</td>
<td>330 – 385</td>
<td>at 20°C</td>
</tr>
<tr>
<td>Brass</td>
<td>95 – 107</td>
<td>at 20°C</td>
</tr>
<tr>
<td>Steel</td>
<td>20 – 45</td>
<td>at 20°C</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>55 – 65</td>
<td>at 20°C</td>
</tr>
</tbody>
</table>
THERMAL CONDUCTIVITY OF METAL ROD APPARATUS

AIM:
To determine the thermal conductivity of the given metal rod

INTRODUCTION:
Thermal conductivity is the physical property of the material. Based on the value of thermal conductivity of material
Thermal conductivity of a material depend on the chemical composition of the substance, the phase(solid, liquid or gas) in which it exists, its crystalline structure if a solid, the temperature and pressure to which it is subjected, and whether or not it is homogeneous material.

DESCRIPTION:
The experimental setup consists of a metal bar, one end of which is heated by an electrical heater while the other end projects inside a cooling water jacket. The middle portion is surrounded by a cylindrical shell filled with insulating powder and five thermocouple are placed on the bar for temperature measurement. For radial measurement of temperature 4 thermocouples are placed at a sections/radius of 42.5 mm&55mm in the insulating shell.
The heater is provided with a dimmerstat for controlling the heat input, water under a constant head is circulated through the jacket and its flow rate and temperature rise are measured using measuring jar and temperature sensors.

PROCEDURE:
(1) Adjust the flow of water to 0.1-0.2 litres / min on Rotameter
(2) Put on the Power supply and adjust the variac to obtain the required Heat input
(3) Wait till the steady state is reached.
(4) Take the readings of thermocouples T₁ – T₁₁
(5) Repeat experiment for different heat input and water flow rate

RESULT:
The thermal conductivity of the given metal rod is
CALCULATIONS:
Heat carried away by water
\[Q_w = m_w \cdot C_{p_w} \cdot \Delta T \]
\(m_w \) = Mass of flow rate of water in kg/sec
\(C_{p_w} \) = Specific heat of water = 4.178 KJ / Kg °K
\(\Delta T = T_{wo} - T_{wi} \)
\[q = Q_w + \frac{((2\pi l \cdot k \cdot (T_5 - T_1)))}{(\ln(r_o / r_i))] \]
\(q \) = Heat flux
\(k \) = Thermal conductivity of insulating powder
\(q \) = Heat flux
Plot the graph of temp. V/s distance \([dT \ V/s \ dx]\)
And find out the temp. Gradient \([dT \ / \ dx]\)

\[Q = Q_w + Q_{\text{conduction}} = Q_w + \frac{2\pi K \cdot l \cdot (T_5 - T_1)}{r_o / r_i} \]

\(k = 0.12 \text{w/m k} \) for insulating powder

Also
\[\frac{dT}{dx} \]
\[Q = -K \frac{A}{dx} \]

\[K = \frac{-Q}{dx} \]

\[A = \frac{c/s}{\pi d^2/4} \]
where \(A \) = c/s area of metal rod \([\pi d^2/4]\)
where \(K \) is the thermal conductivity of metal rod in \((W/ m^0k)\)
Work Sheet
Work Sheet
Experiment -2

SPECIFICATION:

1. Mild Steel 25 mm thick of 300 mm dia. 1 No \(K_1 = 25\) w/m \(^0\)K
2. Hylam 19mm thick of 300 mm dia 1 No \(K_2 = 0.05\) w/m \(^0\)K
3. Wooden 12mm thick of 300 mm dia 1 No \(K_3 = 0.08\) w/m \(^0\)K
4. Mica Heater 300 watts of 300 mm dia 1No
5. Digital temperature indicator 12 channel 1No
6. Digital volt meter 1 No
7. Digital Ammeter 1No
8. Temperature Sensors PT 100 12 Nos

COMPOSITE WALL:

<table>
<thead>
<tr>
<th>MILD STEEL</th>
<th>HYLAM</th>
<th>WOOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_1 = 25) mm</td>
<td>(L_2 = 19) mm</td>
<td>(L_3 = 12) mm</td>
</tr>
<tr>
<td>(K_1)</td>
<td>(K_2)</td>
<td>(K_3)</td>
</tr>
<tr>
<td>(T_1 T_2)</td>
<td>(T_3 T_4)</td>
<td>(T_5 T_6)</td>
</tr>
</tbody>
</table>

TABULER COLUMN:

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(T_3)</th>
<th>(T_4)</th>
<th>(T_5)</th>
<th>(T_6)</th>
<th>(T_7)</th>
<th>(T_8)</th>
<th>(T_9)</th>
<th>(V)</th>
<th>(I)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

CALCULATIONS:

(a) Heat flow through composite wall

\[Q = V \times I\] (Watts)
COMPOSITE WALL APPARATUS

AIM:
To determine the overall heat transfer coefficient of a composite wall

INTRODUCTION:
Heat transfer through composite wall is the transport of energy between two or more bodies of different thermal conductivity arranged in series or parallel. For example a fastener joining two mediums also acts as one of the layer between these two mediums. Hence thermal conductivity of the fastener is also much necessary in determining the overall heat transfer through the medium.

APPARATUS:
The apparatus consists of three slabs of different materials of different thickness clamped in the center using screw rod, at the center of the composite wall a heater is fitted. End losses from the composite wall are minimized by providing thick insulation all round to ensure unidirectional heat flow.

Temperature sensors are fitted at the interface of the plates at different points as to obtain average temperature for each surface. Heat conducted through the composite wall is taken away atm air.

PROCEDURE:
1. Check for the symmetrical arrangement of plates and ensure the perfect contact between the plates.
2. Switch ON mains and the console.
3. The heat input to the heater is fixed for any desired temperature (assume T_1 = T_i) of the plates.
4. After a steady state condition is reached, average temperature of the slabs at the interface is noted.
5. By varying the heat input to the system through a variac different set of readings can be obtained.

RESULT:
The overall heat transfer coefficient of a composite wall is
\[
Q = \frac{K_1 A_1 (T_1' - T_2')}{L_1} = \frac{K_2 A_2 (T_2' - T_3')}{L_2} = \frac{K_3 A_3 (T_3' - T_4')}{L_3}
\]

\[
K_1 = \frac{QL_1}{A_1 (T_1' - T_2')}, \quad \text{where} \quad A = \frac{\pi D^2}{4}
\]

\[
K_2 = \frac{QL_2}{A_2 (T_2' - T_3')}
\]

\[
K_3 = \frac{QL_3}{A_3 (T_3' - T_4')}
\]

Where \(A_1 = A_2 = A_3 = A\).

Note: \(T_1' = \frac{(T_1 + T_2)}{2}\).
\(T_2' = \frac{(T_3 + T_4)}{2}\).
\(T_3' = \frac{(T_5 + T_6)}{2}\).
\(T_4' = \frac{(T_7 + T_8)}{2}\).

(b) Overall heat transfer coefficient (\(U_0\))

\[
U_0 = \frac{1}{\frac{1}{1} \left(\frac{L_1}{K_1} + \frac{L_2}{K_2} + \frac{L_3}{K_3} \right) + \frac{1}{A}}
\]
Work Sheet
Experiment -3

NATURAL CONVECTION:-

SPECIFICATIONS:

Length of the pin – fin (L) = 120mm
Diameter of the pin fin (D) = 13mm
Diameter of the orifice (D₀) = 30mm
Diameter of the pipe (Dp) = 50mm
Coefficient of discharge C_d = 0.64
Thermal conductivity of fin material (K) = 110 W/mK
Duct size = 150 mm x 100mm
Distance between each thermocouple on pin fin = 20 mm

TABULAR COLUMN:

<table>
<thead>
<tr>
<th>SI.No.</th>
<th>Voltage</th>
<th>Current In amps</th>
<th>Position of the thermocouple from the pin base in mm & Temp. along the pin – fin in °C</th>
<th>Amb. Temp In °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V</td>
<td>I</td>
<td>t₁</td>
<td>t₂</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HEAT TRANSFER THROUGH PIN - FIN

AIM:

To determine the following in natural convection and forced convection:

- Theoretical and Experimental temperature along the length of the pin – fin
- Effectiveness of the pin – fin
- Efficiency of the pin – fin

INTRODUCTION:

Fins are deliberately provided protrusions on metallic surfaces to increase the heat transfer area. Fins could be of uniform cross sectional area or the area may be varying along the length of the fin. Under same conditions, a surface with a fin transfer heat faster than a surface without a fin. A common example is the fin provided in the cylinder of an air cooled internal combustion engine. Heat is transferred by the heated surface to the fin by conduction and in turn the pin transfer heat to the surrounding fluid either by natural or forced convection.

‘Effectiveness of a Fin’ (E) is defined as the ratio of the heat transfer from a surface with a fin and without the fin.

‘Fin Efficiency’ (η) is defined as the ratio of actual heat transfer from a surface to the heat that would have been transferred had the entire fin area were to be at the base temperature.

APPARATUS:

The apparatus, mainly, consists of a fin in the form of a horizontal metallic pin. The pin is heated at one end,(i.e., the base of the fin) by an electric heater. The pin is located in the middle of a long duct which can be supplied by air from a blower. When the blower is on and air is being forced against the fin, the fin is subjected to forced convection heat transfer. When the blower is off the pin is subjected to natural convection heat transfer. There are five Temp sensors (t1 to t5) fixed on the surface of the fin. Each is separated from the next one by 20 mm. The first sensors is at the fin. One more sensors (t6) measures the room air temperature. The air flow rate through the duct is measured using an orifice meter. The power supplied to heater is evaluated by measuring the voltage and the current.

PROCEDURE:

(a) Natural Convection:-

1. The electric heater is switched on.
2. The potential drop across the heater coil is adjusted to be around 60 V.
3. Wait until near steady state conditions are reached.
CALCULATIONS:

(i) (a) Draw the temperature profile along the length of the pin – fin using the experimentally measured temperatures along the length of the pin fin.

\[Q = VI \]

\[A = \pi DL \]

We have, \[T_a = T_0 \]

\[H = \frac{Q}{A(T_s - T_a)} \]

\[T_1 + T_2 + T_3 + T_4 + T_5 \]

Where \[T_s = \frac{T_1 + T_2 + T_3 + T_4 + T_5}{5} \]

We have \[m = \sqrt{\frac{(H*P)}{K*A}} \]

\[P = \pi D \]

(ii) Effectiveness,

Effectiveness is evaluated from:

\[E = \frac{\text{Tanh} (mL)}{\sqrt{\frac{HA}{KP}}} \]

Fin Effectiveness =
4. At this instant the temperatures indicated by any thermocouple does not change substantially in a certain period, say 30 s.
5. Enter the various experimental observations in the observation table:

(b) Forced Convection:

1. After taking reading for natural convection heat transfer, switch the blower on.
2. Adjust the flow rate of air through the duct such that the pressure drop across the orifice is 40 – 50 mm H₂O.
3. Wait for near steady state conditions.
4. Take the different readings and enter them in the tabular form:

Note: Experimental and theoretical temperature distributions are plotted following the same steps as in Natural Convection. The only difference here is the methodology used to evaluate the value of the heat transfer coefficient ‘h’. In forced convection, for flow through a duct, the three dimensionless numbers are related by:

\[\text{Nu} = C(\text{Re})^{n}\text{Pr}^{0.333} \]

The values of ‘C’ and ‘n’ depend on ‘Re’ and they can be obtained from data book as a function of Re.
(iii) Fin Efficiency, \(\eta \):

\[
\eta = \frac{\tanh (mL)}{mL}
\]

Fin Efficiency =

FORCED CONVECTION:

<table>
<thead>
<tr>
<th>SI.No.</th>
<th>Voltage</th>
<th>Current In amps</th>
<th>Position of the thermocouple from the pin base in mm & Temp. along the pin – fin in °C</th>
<th>Amb. Temp In °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>(V)</td>
<td>(I)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
Q = VI
\]

\[
A = (\pi DL)
\]

We have, \(T_s = T_6 \)

\[
\frac{Q}{H} = \frac{Q}{A(T_s-T_a)}
\]

\[
T_1+T_2+T_3+T_4+T_5
\]

Where \(T_s = \frac{T_1+T_2+T_3+T_4+T_5}{5} \)

We have \(m = \sqrt{\frac{HP}{KA}} \)
RESULT:

Natural Convection

<table>
<thead>
<tr>
<th>Fin Effectiveness =</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fin Efficiency =</td>
<td></td>
</tr>
</tbody>
</table>

Forced Convection

<table>
<thead>
<tr>
<th>Fin Effectiveness =</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fin Efficiency =</td>
<td></td>
</tr>
</tbody>
</table>
P = \pi D

(ii) Effectiveness,

Effectiveness is evaluated from:

\[E = \frac{\text{Tanh (mL)}}{\sqrt{\frac{\text{HA}}{\text{KP}}}} \]

Fin Effectiveness =

(iii) Fin Efficiency, \(\eta \):

\[\eta = \frac{\text{tanh (mL)}}{\text{mL}} \]

Fin Efficiency =
Work Sheet
Experiment -4

SPECIFICATION:

- Dia of the tube ‘d’ = 38 mm (0.038 m)
- Length of the tube ‘L’ = 500 mm (0.5 m)
- Duct Size = 250 mm x 250 mm x 900 mm
- No. of Temperature sensors = 7 Nos.

TABULAR COLUMN:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Dimmer stat Reading W</th>
<th>Voltmeter Reading V, Volts</th>
<th>Current I Amps</th>
<th>Surface Temperature °C</th>
<th>Ambient Temp° C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T1</td>
<td>T2</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CALCULATIONS:

Experimental Method

\[
Q = \text{Rate of heating, } V \times I, \text{ watts.}
\]

\[
h = \frac{Q}{A \left(T_s - T_a \right)}
\]

\[
A = \pi \times D \times L, \text{ where } D = \text{ Dia. of cylinder rod}
\]

\[
L = \text{ length of cylinder}
\]

\[
T_s = \frac{T_1 + T_2 + T_3 + T_4 + T_5 + T_6}{6}
\]

\[
T_a = \text{ Ambient temperature } = T_7
\]
NATURAL CONVECTION

AIM:
To determine the natural convection heat transfer co-efficient for the vertical tube exposed to atmospheric air.

INTRODUCTION:
There are certain situations in which the fluid motion is produced due to change in density resulting from temperature gradients. The mechanism of heat transfer in these situations is called free or natural convection. Free convection is the principle mode of heat transfer from pipes, transmission lines, refrigerating coils, hot radiators etc.

The movement of fluid in free convection is due to the fact that the fluid particles in the immediate vicinity of the hot object become warmer than the surrounding fluid resulting in a local change of density. The warmer fluid would be replaced by the colder fluid creating convection currents. These currents originate when a body force (gravitational, centrifugal, electrostatic etc) acts on a fluid in which there are density gradients. The force which induces these convection currents is called a buoyancy force which is due to the presence of a density gradient with in the fluid and a body force. Grashof number a dimensionless quantity plays a very important role in natural convection.

DESCRIPTION:
The apparatus consists of a brass tube fitted in a rectangular duct in a vertical fashion. The duct is open at the top and bottom and forms an enclosure and served the purpose of undisturbed surrounding. One side of the duct is made up of Perspex for visualization. An electric heating element is kept in the vertical tube which intern heats the tube surface. The heat is lost from the tube to the surrounding air by natural convection. The temperature of the vertical tube is measured by seven thermocouples. The heat input to the heater is measured by an Ammeter and a Voltmeter and is varied by a dimmer stat. The tube surface is polished to minimize the radiation losses.

PROCEDURE:
(1) Switch on the supply and adjust the variac to obtain the required heat input
(2) Wait till the steady state is reached.
(3) Take the readings (Note down the readings) of thermocouples T1 – T6.
(4) Note down the ambient temperature T7.
(5) The experiment can be repeated for different heat inputs

RESULT:
The natural convection heat transfer co-efficient is
Natural Convection Apparatus Specification

Tube Material : Brass
Dia of the tube : 38 mm
Length of the tube : 500 mm
Distance between two Consecutive thermocouple 75 mm (T1 to T6)
Work Sheet
Experiment -5

SPECIFICATIONS:

Pipe diameter $D_0 = 32$ mm
Pipe diameter $D_i = 27$ mm
Length of the test section $L = 610$ mm
Orifice diameter $d = 16$ mm
Dimmerstat 0-2 Amps, 230 V AC

TABULAR COLUMN:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Voltmeter Reading ‘V’</th>
<th>Current ‘I’</th>
<th>Surface Temperature °C</th>
<th>Air inlet Temp T_1 °C</th>
<th>Air Outlet Temp T_7 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volts</td>
<td>Amps</td>
<td>T_2</td>
<td>T_3</td>
<td>T_4</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CALCULATIONS:

EXPERIMENTAL METHOD OF CALCULATION OF ‘h’.

From Newton’s law of Cooling

To find convective transfer co-efficient

$$Q = h A (T_w - T_a)$$

$$h = \frac{Q}{A (T_w - T_a)}$$

Where
HEAT TRANSFER THROUGH FORCED CONVECTION

AIM:
To determine the surface heat transfer co-efficient ‘h’ for a horizontal tube loosing heat by forced convection.

INTRODUCTION:
Convection is a process of energy transport by the combined action of heat conduction, energy storage and mixing motion. When the mixing motion is induced by some external agency such as pump or a blower the process is called forced convection. The intensity of the mixing motion is generally high in forced convection and consequently the heat transfer coefficients are higher than free convection. By using the dimensional analysis, the experimental results obtained in forced convection heat transfer can be correlated by equation of the form

Rate of heat transfer through convection is given by:

\[Q = hA (T_s - T_{av}) \]

Where ‘h’ is the average convective heat transfer coefficient, ‘A’ the area of heat transfer, \(T_s \) is the heated surface temperature and \(T_{av} \) is the average fluid temperature.

DESCRIPTION:
The apparatus consists of a blower unit fitted with the test pipe. Nichrome band heater surrounds the test section. Four thermo couples are embedded on the test section and two thermo couples are placed in the air stream at the entrance and exit of the test section to measure the air inlet and outlet temperatures. Test pipe is connected to the delivery side of the blower along with the orifice to measure flow of air through the pipe. Input to heater is given through Dimmerstat and measured by voltmeter and ammeter. Airflow is measured with the help of orifice meter and the manometer fitted on the board.

PROCEDURE:

1. Put on the supply and adjust the variac to obtain the required heat input.
2. Switch on the blower unit and adjust the flow of air using gate valve of blower to a desired difference in manometer (4 or 5 cms alternately)
3. Wait till the steady state is reached.
4. Take the readings of thermocouples T_1 - T_6.
5. Note down a) Voltmeter reading ‘V’ volts.
 b) Ammeter reading ‘A’ amps.
6. Repeat the same procedure for different heat inputs and also for different flow rates of air & tabulate the values.
Q = heat transfer rate = V \times I = \text{watts.}

Dia of the tube \(D_0 = 32 \text{ mm} \)
Length of test section \(L = 610 \text{ mm} \)

\(T_w = \text{avg. Surface temperature.} \)
\(T_w = (T_2 + T_3 + T_4 + T_5 + T_6) \)
\[T_a = \frac{(T_1 + T_7)}{2} \]

Volumetric flow rate

\[q_0 = C_d \cdot a \cdot \sqrt{2 \cdot g \cdot h_a} \text{ m}^3/\text{sec.} \]

Where, \(C_d = \text{Co-efficient of discharge of Orifice} = 0.62, \)
\[a = \text{Area of orifice of air intake} = \left(\pi \cdot d^2 / 4 \right) \text{ m}^2 \]
\[d = \text{Diameter of Orifice} = 14 \text{mm} \]
\[g = \text{acceleration due to gravity} = 9.81 \text{ m/ sec}^2 \]

\[h_a \text{ (in meters of air column)} = \frac{h_{\text{water}} \cdot \rho_{\text{water}}}{\rho_{\text{air}}} \text{ OR } h_a = \frac{h_w \cdot \rho_w}{\rho_a} \]

\[h_{\text{water}} = \text{Head in meters of water column = L.H.S.} - \text{R.H.S. (in m).} \]
\[\rho_{\text{water}} = 1000 \text{ Kg/m}^3, \]
\[\rho_{\text{air}} = 1.154 \text{ Kg/m}^3 \]

Velocity of flow through pipe

\[V = \text{Velocity} = \frac{\text{Vol. flow rate}}{\text{Area of the pipe}} = \frac{q_0}{\pi D_0^2 / 4} = \frac{\text{m}}{\text{sec}} \]
RESULT:

<table>
<thead>
<tr>
<th>SL No.</th>
<th>$h_{\text{experimental}}$</th>
<th>Volume flow rate</th>
<th>Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FORCED CONVECTION SPECIFICATION

Pipe material : G.I
OD of pipe : 32 mm
ID of pipe : 27 mm
Length of Test section : 610 mm
Distance between two consecutive thermo couple (T1 to T4) : 100 mm
Work Sheet
Experiment -6

SPECIFICATION: -
Diameter of test plate = 120 mm (0.12 m)
Diameter of black plate = 120 mm (0.12 m)
Enclosure size = 550 x 300 x 300 mm
Circular Plate material : Copper

TABULAR COLUMN: -

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Dimmer stat Reading</th>
<th>Black – Plate</th>
<th>Test plate</th>
<th>Ambient Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W1</td>
<td>W2</td>
<td>V1</td>
<td>I1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CALCULATION: -

1. Emissive power of black plate (according to Stefan Boltzmann law)

\[E_b = \sigma \Delta T^4 \]

Where \(\sigma \) = Stefan Boltzmann constant
\[= 5.67 \times 10^{-8} \text{ W/m}^2 \text{K}^4 \]
\(\Delta T \) = Average surface temp.

\[\Delta T^4 = \left(\frac{T_1 + T_2 + T_3}{3} + 273^0 \text{K} \right)^4 - (T_7 + 273)^4 \]
EMISSIVITY MEASUREMENT

AIM: -
To determine the emissivity of the given surface (Test plate)

INTRODUCTION: -
Thermal radiations are emitted by all substances at all temperatures. Thermal radiations are electromagnetic waves and do not require any medium for propagation. All substances or bodies can emit radiations and have also the capacity to absorb all or a part of radiation coming from surroundings. The emissive power is the radiant energy per unit area from the surface of the body and is denoted by E. Emissivity is the ratio of emissive power of the surface to the emissive power of the black surface, at the same temperature &

\[E = \varepsilon \]

is denoted \(\varepsilon \) = \(\frac{E}{E_b} \).

DESCRIPTION: -
The experimental set up consists of two circular copper plates identical in size and is provided with heating coils at the bottom. The plates are mounted on asbestos cement sheet and are kept in an enclosure so as to provide undistributed natural convection surroundings.

The heat input is varied by dimmer stat and is measured by Ammeter and Voltmeter with the help of switches. The temperature of the plates is measured by thermocouples; separate wires are connected to diametrically opposite points to get average surface temperature of the plates. Another thermocouple is kept in the enclosure to read the ambient temperature of the enclosure.
Plate (1) = Black plate and plate (2) is test plate whose emissivity is to be determined.

PROCEDURE: -
1. Switch on the supply and select one of the plates.
2. Keep the rotary switch on Black plate and adjust the dimmer stat to obtain the required heat input.
3. Wait till the steady state is reached.
4. Note the value of V and I and take the readings of thermocouples T1, T2 & T3.
 Change the toggle switch to test plate and adjust dimmer stat to a value slightly lesser than the applied black plate.
5. Note the steady temperature of T4, T5 & T6.
6. Repeat the experiment for different heat inputs.

RESULT:
The emissivity of the given surface (Test plate) is
2. Emissive power of Grey body (Test specimen)

\[E_g = \sigma \Delta T^4 \]

Where \(\sigma = 5.67 \times 10^{-8} \)

\[\Delta T^4 = \left(\frac{T_4 + T_5 + T_6}{2} + 273^0 K \right)^4 - (T_7 + 273)^4 \]

\[\frac{E_g}{E_b} \]

3. Emissivity \(\varepsilon = \frac{E_g}{E_b} \)

EMISSIVITY MEASUREMENT APPARATUS
Work Sheet
Experiment -7

SPECIFICATIONS:

1. Hemisphere enclosure diameter = 200 mm (0.2 m)
2. Water jacket diameter = 200 mm (0.2 m)
3. Water jacket height = 107 mm (0.107 m)
4. Test disc diameter (Copper) = 20 mm (0.02 m)
5. Test disc thickness = 1.8 mm (0.0018 m)
6. Density of the test disc = 8.93 Kg / m3
7. Mass of the disc = 6.8 x 10^{-3} kg
8. Hylam sheet = 6mm thick, 325 mm dia

TABULAR COLUMN:

<table>
<thead>
<tr>
<th>Temperature Readings</th>
<th>Time in min for which T_6 is noted</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>0 1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>T_2</td>
<td></td>
</tr>
<tr>
<td>T_3</td>
<td></td>
</tr>
<tr>
<td>T_4</td>
<td></td>
</tr>
<tr>
<td>T_5</td>
<td></td>
</tr>
<tr>
<td>T_6</td>
<td></td>
</tr>
</tbody>
</table>

CALCULATIONS:

$$
\sigma = \frac{m \cdot S \cdot (dT/dt)}{A_d \cdot (T_s^4 - T_d^4)} (K \text{ cal/hr-m}^2 \cdot 0K^4)
$$

$$
A_d = \text{Surface area of the disc} = \frac{\pi \cdot d^2}{4} \text{ in m}^2
$$

$$
T_s = \text{Surface temperature} = \frac{T_1 + T_2 + T_3 + T_4 + T_5}{5} + 273 \, ^0K
$$

$$
T_d = \text{Disc Temperature} = T_6 + 273 \, ^0K, \text{ where } T_6 \text{ is taken at zeroth second.}
$$
STEFAN BOLTZMANN APPARATUS

AIM:
To determine the Stefan Boltzmann Constant for the given material

INTRODUCTION:
The most commonly used law of thermal radiation is the Stefan Boltzmann’s law which states that thermal radiation (heat flux) or emissive power of black surface is directly proportional to the fourth power of absolute temperature of the surface and given by

\[q/A = \sigma \ T^4 \text{ k cal/hr-m}^2 \]

The constant of proportionality \(\sigma \) is called the Stefan Boltzmann’s Constant and has value of \(4.876 \times 10^{-8} \text{ k cal/hr-m}^2 \cdot \circ {\text{k}}^4 \)

DESCRIPTION:
The apparatus consists of flanged copper hemisphere, fixed on a flat non-conducting plate. The outer surface of hemisphere is enclosed in a metal water jacket used to heat to some suitable constant temperature. The hemispherical shape is chosen solely on the grounds that it simplifies the task of drawing the water on to the hemisphere. Five Thermocouples are attached to the inner surface of the hemisphere. A test disc which is mounted on bakelite plate fitted in a hole drilled in the center of base plate. Thermocouple is used to measure the temperature of test disc.

When the test disc is inserted at the start of a stop watch, the response of temperature change of disc with time is measured to calculate the Stefan Boltzmann constant

PROCEDURE:

1. Fill the water in the upper tank.
2. Switch on the immersion heater and heat it up to its boiling points
3. Remove the test disc before allowing the boiling water into the lower tank.
4. Switch off the heater and open the valve and allow the water into the lower tank.
5. Wait until the steady state is reached.
6. Note down the thermocouple readings \(T_1, T_2, T_3, T_4, T_5 \) and \(T_6 \).
7. Insert the test disc and start the stop watch simultaneously & note down the temperature of \(T_6 \) at every thirty seconds interval.
8. Draw the graph of temperature Vs time and calculation \(dT/dt \).

RESULT:
The Stefan Boltzmann Constant for the given material is
Note:

\[m = \text{Mass of disc} = 6.8 \times 10^{-3} \text{ Kg} \]
\[S = \text{Specific heat of the disc} = 0.385 \times 10^3 \text{ KJ/kg }^0 \text{K} \]

Also

\[Q = m \times S \times 60 \left(\frac{dT}{dt} \right) \]
\[Q = \sigma A_d (T_s^4 - T_d^4) \]
\[\sigma = \text{W/m}^2 \text{ K}^4 \]

Graph: Disc temperature v/s time

STEFAN BOLTZMANN APPARATUS
Work Sheet
Experiment -8

SPECIFICATION:-

Inside diameter of the outer tube	Di = 28 mm
Length of the pipe	L = 1450 mm
Inside dia of inner tube	di = 9.5 mm
Outside dia of the inner tube	do = 12.5 mm
Specific heat of water	Cw = 4187 J/kgk or 4.19 kj / kg K
Thermal conductivity of stainless steel,	Kss = 150 W / mK
Thermal conductivity of copper	Kc = 385 W / mK

DATA:-

\[T_1 = T_{ci} = \text{Cold water inlet} \]
\[T_2 = T_{co} = \text{Cold water outlet (Counter flow)} \]
\[T_3 = T_{co} = \text{Cold water outlet (Parallel flow)} \]
\[T_4 = T_{hi} = \text{Hot water inlet} \]
\[T_5 = T_{ho} = \text{Hot water outlet} \]

OBSERVATION AND TABULAR COLUMN:

<table>
<thead>
<tr>
<th>SI. No.</th>
<th>Type of Flow</th>
<th>Flow rate of cold water, (V_c) (lpm)= (m_c),Kg/min (assuming (\rho = 1.0) kg/lit)</th>
<th>Flow rate of hot water, (V_h) (lpm)= (m_h),Kg/min (assuming (\rho = 1.0) kg/lit)</th>
<th>Temperature (\circ C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(T_1) (T_2) (T_3) (T_4) (T_5)</td>
</tr>
<tr>
<td>1</td>
<td>Parallel</td>
<td></td>
<td></td>
<td>(\times) (\times) (\times) (\times) (\times)</td>
</tr>
<tr>
<td>2</td>
<td>Counter</td>
<td></td>
<td></td>
<td>(\times) (\times) (\times) (\times) (\times)</td>
</tr>
</tbody>
</table>
PARALLEL FLOW & COUNTER FLOW
HEAT EXCHANGER

AIM:-
To determine the following for (i) Parallel flow heat exchanger and (ii) Counter flow heat exchanger

- Log mean temperature difference (LMTD)
- Overall heat transfer coefficient (Experimental)
- Overall heat transfer coefficient (Theoretical)

INTRODUCTION:

Heat exchangers are devices in which heat is transferred from one fluid stream to another, without mixing of the two. The temperature of the hot fluid decreases and the temperature of the cold fluid increases as both of them flow through the heat exchanger. An ideal heat exchanger (100% efficient heat exchanger) is one in which there are no heat losses: meaning that the net transferred from the hot fluid goes entirely to the cold fluid.

In the Parallel Flow Heat Exchanger both the fluid streams move in the same direction .in the Counter Flow Heat Exchanger the two streams move in opposite directions. Radiator in an automobile, a boiler, an air preheated, an economizer in a boiler power plant, a condenser, an evaporator in a refrigerator etc are common examples of heat exchanger.

EXPERIMENTAL SETUP:

As shown in the figure, the experimental setup consists of a horizontal inner Copper tube surrounded by an outer stainless steel tube. While hot water flows through the inner tube, cold water flows in the annulus between the inner and the outer tubes, An electric immersion heater is used to heat the water in an insulated storage tank. The heater is automatically switched off or on by the thermostat which senses the temperature of the hot water in the tank and maintain the set temperature. The water can thus be heated to a predetermined temperature and held constant at that level. Heated eater is flown through the heat exchanger with the help of a water pump. The flow rate of hot water can be regulated by suitably manipulating the discharge valve and the by pass valve across the pump. The flow rate can be measured by closing the discharge valve leading to the tank and opening the drain valve and noting the time for flow of a liter of water in to a graduated jar. After measurement the collocated water is immediately poured back to the tank.
CALULATIONS:
A) Parallel Flow Heat Exchanger

1. Log Mean Temperature Difference:

Given below is the temperature profile (temperature vs Length of the heat exchanger) in a parallel flow heat exchanger.

With respect to this figure LMTD is evaluated from:

\[\text{LMTD} = \frac{\Delta T_1 - \Delta T_2}{\ln \left(\frac{\Delta T_1}{\Delta T_2} \right)} \]

Where, \(\Delta T_1 = (T_{hi} - T_{ci}) \) and \(\Delta T_2 = (T_{ho} - T_{co}) \).
Cold water from the overhead tank flows through the heat exchanger. Its flow can be regulated using a control valve and the flow rate is measured with help of a rotometer. By operating appropriately the directional control valves the direction of flow of the cold water can be changed to make the heat exchanger work in either the parallel flow mode or in the counter flow mode. Temperature sensors indicate the temperature at different locations. The outer tube is sufficiently insulated to minimize the heat loss.

PROCEDURE:

1. Connect the electrical panel to a 230 v, 15 A power socket and the Rotameter inlet to a \(\frac{1}{2} \)" water source
2. Operate appropriate valves and select the heat exchanger to work in either parallel flow or counter flow mode
3. Open the inlet flow control valve of the Rotameter and allow the cold water to flow through the heat exchanger, set the flow rate to any desired rate of discharge
4. Check the hot water tank is filled with water to \(\frac{3}{4} \) its full capacity
5. Start the hot water pump and set the flow rate by operating the by pass and inlet valves and measure the set flow rate with a measuring jar against time and record it (let the hot water flow be higher the cold water flow rate) and connect it back to sump as the hot water circulation is a closed Circuit Flow.
6. Switch “on” the heater and wait till the hot water inlet temperature reaches a steady state.
7. Record the temperature \(T_1, T_2, T_3, T_4 \) in case of parallel flow and \(T_1, T_2, T_4, T_3 \), in case counter Flow
8. Tabulate all the observation and calculate
9. To close the experiment switch “off” the heater, stop the hot water pump and close the cold water flow control valve
2. Experimental Overall Heat Transfer Coefficient Based on inside area (U_i):

Heat Lost by hot stream of water, \(Q_h = \frac{m_hC_w(T_{hi} - T_{ho})}{60} \) W

Heat gained by cold stream of water, \(Q_c = \frac{m_cC_w(T_{co} - T_{ci})}{60} \) W

Under ideal conditions (When the efficiency of heat exchanger is 100%), \(Q_h \) will be equal to \(Q_c \) in magnitude. In practice they may differ marginally depending upon the quality of the setup. Hence, experimentally, the rate of heat transfer, \(Q \), between the hot and cold streams can be taken to be the mean of the two. Therefore:

\[
Q = \frac{Q_h + Q_c}{2} \quad (2)
\]

And, Experimental \(U_i = \frac{Q}{\frac{A_i}{(LMTD)}} \) W / m² K \((3) \)

Where, \(A_i = \pi d_i L \) with \(d_i \) in m.

3. Theoretical Overall Heat Transfer Coefficient:

\[
U_i = \frac{1}{\frac{1}{h_i} + \frac{d_i}{K_c} \ln \left(\frac{d_i}{d_o} \right) + \frac{d_i}{d_o} \left(\frac{1}{h_o} \right)} \quad (4)
\]

To find the inside heat transfer coefficient (h_i):

For cold water stream which is getting heated up, based on Dittus – Boelter equation (available in Data Books), for fully developed flow, with 0.6 < Pr < 100, and 2500 < Re < 1.25 x 10⁶ > L/d>60:

\[
Nu = 0.023 \ Re^{0.8} \ Pr^{0.4} \quad (5)
\]

Where \(\rhoVd_i \) and \(\mu \) are evaluated for the bulk mean temperature of \(T_{m,c} = \frac{T_{co} + T_{ci}}{2} \)
RESULT:

<table>
<thead>
<tr>
<th>Type of Heat Exchanger</th>
<th>LMTD</th>
<th>Experimental U_i, in W / m2 K</th>
<th>Theoretical U_i, in W / m2 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel Flow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counter Flow</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pr = \frac{\mu c_p}{K_w} = \frac{\mu c_w}{K_w} \quad (7)

and its value for water can either be (1) directly obtained from data for the bulk mean temperature, \(T_{m,c} \) or (ii) can also be evaluated by noting from data books the values of \(\mu \) and \(K_w \) for water at \(T_{m,c} \).

Using the values of \(Re \) and \(Pr \) from Eqs. (6) and (7) in Eq. (5) get the value of \(Nu \).

Then as \(Nu = \frac{h_i d_i}{K_w} \), \(hi = \frac{Nuk_w}{d_i} \) \(W/m^2K \) \quad (8)

To find the outside heat transfer coefficient \((h_o) \)

For hot water stream in the annulus, which is getting cooled, based on Dittus – Boelter equation (available in Data Books), for fully developed flow, with \(0.6 < Pr < 100 \), and \(2500 < Re < 1.25 \times 10^6 \) and \(L/d > 60 \):

\[Nu = 0.023 \, Re^{0.8} \, Pr^{0.3} \quad (9) \]

Where \(Re \) and \(Pr \) are evaluated for the bulk mean temperature of \(T_{m,h} = \frac{T_{hi} + T_{ho}}{2} \)

\[Re = \frac{\rho V(Di - do)}{\mu} = \frac{4m_h/60}{\pi(Di - do) \mu} \quad (10) \]

\[Pr = \frac{\mu c_p}{K_w} = \frac{\mu c_w}{K_w} \quad (11) \]

And its value for water can either be (i) directly obtained from data books for the bulk mean temperature, \(T_{m,h} \) or (ii) can also be evaluated by noting from data books the values of \(\mu \) and \(K_w \) for water at \(T_{m,h} \).

Then, as \(Nu = \frac{h_i(Di - do)}{K_w} \), \(hi = \frac{NuK}{(Di - do)} \) \(W/m^2K \) \quad (12)
Work Sheet
Using the values of h_i and h_o from Eqs. (8) & (12) in Eq. (4) get the value of Theoretical U_i

B) Counter Flow Heat Exchanger:

1. **Log Mean Temperature Difference:**

Given below is the temperature profile (temperature vs Length of the heat exchanger) in a counter flow heat exchanger.

With respect to this figure LMTD is evaluated from:

$$\text{LMTD} = \frac{\Delta T_1 - \Delta T_2}{\ln \left(\frac{\Delta T_1}{\Delta T_2} \right)} \quad (1)$$
Work Sheet
Where, \[\Delta T_1 = (T_{hi} - T_{co}) \] and \[\Delta T_2 = (T_{ho} - T_{ci}) \]

Experimental and Theoretical Overall Heat Transfer Coefficients are evaluated following the same steps as given under Parallel Flow Heat Exchanger.

PARALLEL FLOW AND COUNTER FLOW HEAT EXCHANGER

Outer pipe (SS)
OD – 31.5
ID – 28mm
Inner pipe (copper)
OD – 12.5mm
ID – 9.5mm
Effective length - 1450
Work Sheet
Experiment -9

SPECIFICATIONS:

Copper Tube Condenser for Film wise Condensation

- Inner diameter , di = 17mm
- Outer diameter , do = 19.2mm
- Length of the tube, L = 150mm

Chromium Plated Condenser for Drop wise Condensation:

- Inner diameter , di = 17mm
- Outer diameter , do = 19.2mm
- Length of the tube, L = 150 mm

Temperatures (°C)

- T₁ = Water inlet
- T₂ = Water outlet of copper condenser
- T₃ = Water outlet of Plated Condenser
- T₄ = Surface copper condenser
- T₅ = Surface plated condenser
- T₆ = Glass chamber (steam)

OBSERVATION TABLE:

Film wise condensation (Copper Condenser) (Plain)

<table>
<thead>
<tr>
<th>SI. No.</th>
<th>Water flow rate, Mw lpm (≈ kg /min)</th>
<th>Steam Pressure,Ps Kg /cm² (≈ bar)</th>
<th>Temperature °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>T₁</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dept. Of Mechanical Engg, CIT, Gubbi
FILMWISE AND DROPWISE CONDENSATION:

AIM:

To determine the individual Heat Transfer Coefficient and overall heat transfer coefficient in Film wise’ condensation or ‘drop wise’ condensation using Condensation Apparatus

INTRODUCTION:

Condensation of steam is one of many important processes occurring in process industries and power plants. Steam is generally condensed as it transfers heat to a cooling medium. During condensation very high heat fluxes are possible and hence heat has to be quickly transferred from the condensing surface to the cooling medium in the condenser working as a heat exchanger.

Steam may condense on a surface in two distinct modes, known as ‘Film wise Condensations’ and ‘Drop Wise Condensation’ for the same temperature difference between the steam and the condensing surface. ‘Drop wise’ condensation is much more effective than ‘film wise condensation’ and for this reason, the former is desirable.

FILM WISE CONDENSATION: (Copper Condenser)

Unless specially treated, most materials are wet table and as condensation occurs a film of condensate spreads over the surface. The thickness of the film depends upon a number of factors such as (i) the rate of condensation, (ii) the viscosity if the condensate and (iii) orientation of condensing surface, whether vertical, horizontal or inclined. As fresh vapor condenses on top of film, the heat of condensation has to pass by conduction through the film to the metal surface beneath. As the film thickness; it flows downward and drips from the low points leaving the film intact and at an equilibrium thickness.

DROP WISE CONDENSATION: (Chromium Plated)

By treating the condensing surface specially, such as plating it with chromium, it can be made ‘non–wettable’. As steam condenses, generally, a large number of spherical beads cover the surface. As condensation proceeds, the beads become large, coalesce, and then trickle downwards from the condensing surface. The moving bead gathers on the static beads along its trail. The ‘Bare’ surface offers very little resistance to the transfer of heat and very high heat fluxes are therefore possible.
Drop wise condensation: (Chromium Plated)(Coated)

<table>
<thead>
<tr>
<th>SI. No</th>
<th>Water flow rate, Mw lpm (≈ kg/min)</th>
<th>Steam Pressure, Ps Kg/cm² (≈ bar)</th>
<th>Temperature °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>T₁</td>
</tr>
</tbody>
</table>

CALCULATIONS:

(A) Film wise Condensation;

The overall heat transfer coefficient based on inner surface area is given by:

\[
U_i = \frac{1}{\frac{1}{h_i} + \left(\frac{d_i}{d_o} \right) \frac{1}{h_o}} \tag{1}
\]

Inner Heat Transfer Coefficient, \(h_i \):

\[
Nu = 0.023 \ (Re)^{0.8} \ (Pr)^{0.4} \tag{2}
\]

All properties of water, required to evaluate \(Re \) and \(Pr \) are found from Data books for the bulk mean temperature, \(T_w \) given by:

\[
T_w = \frac{T_1 + T_3}{2} \tag{3}
\]

The properties required are, with usual notations \(\rho \), \(\mu \), \(K \) and \(Pr \).

Reynolds number is given by:

\[
Re = \frac{\rho V d_i}{\mu} = \frac{4(m_c/60)}{\pi d_i \mu} \tag{3}
\]

The prandtl No.is given by:

\[
Pr = \frac{\mu C_p}{K_w} = \frac{\mu C_w}{K_w} \tag{4}
\]
EXPERIMENTAL SETUP:

The equipment consists on a metallic container in which steam generation takes place. A suitable electric heater is installed in the lower portion of the container which heats water and facilitates steam generation. To regulate the rate of steam generation the input voltage to the heater can be altered by means of a voltage regulator. An opening is provided in the cover for filling water. The glass cylinder houses two water cooled copper condensers, one of which is chromium plated to promote drop wise condensation and the other is in its natural state to give film wise condensation. A pressure gauge is provided to measure the steam pressure. Separate cooling water connections are provided to the two condensers. A Rota meter is provided to measure flow rate of cooling water through the condenser. A multi–channel digital temperature indicator is provided to measure temperature of steam, condenser surfaces, condenser cooling water inlet and outlet.

PROCEDURE:

1. Fill the steam generator with water to a little over half, checking the water level in the tank by a level indicator.
2. Allow the cooling water to flow through one of the condensers, which is selected for the test, and note down the water flow rate from the Rota meter. It is recommended to have the flow rate between 1 – 2 lpm.
3. Switch ON the heater. Adjust the voltage across heater to be around 150 V as indicated by the voltmeter. Wait till steam pressures rises to 0.5 kg/cm
4. Allow the Steam Slowly to flow through the glass Chamber, as the steam flows over the selected test section it gets condensed and falls to the bottom of the glass container and drains out through the drain valve. Maintain the pressure in the steam generator constant by increasing or decreasing the voltage across the heater according to the variation in the pressure. Depending up on the type of the condenser selected drop wise or film wise condensation can be visualized.
5. Note down the water flow rate, steam pressure, temperatures T1 to T7 and enter them in the table given below:
6. Proceed for calculation.

PRECAUTION:

1. Do not start heater supply unless water is filled in the steam generator to nearly ¾ of its capacity. If water is insufficient in the steam generator the heater burns out.
2. Operate gently the selector switch of temperature indicator as well as control valves.
and its value for water can either be (i) directly obtained from data books for the bulk mean temperature, T_w or (ii) can also be evaluated by noting from data books the values of μ and K_w for water at T_w.

Using the values of Re and Pr from Eqs. (3) and (4) in Eq. (2), get the value of Nu.

Then, as
$$Nu = \frac{h_i d_i}{K_w}$$
$$h_i = \frac{NuK_w}{d_i}$$

Then, as
$$Nu = \frac{h_i d_i}{K_w}$$
$$h_i = \frac{NuK_w}{d_i}$$

Outside Heat Transfer Coefficient, h_o:

$$h_o = 0.943 \left(\frac{K^3 \rho^2 H_{fg}}{0.25 \mu L (T_1-T_3)} \right)$$

Where the properties found from data books for bulk temperature of the condensing steam, T_s, given by:
$$T_s = \frac{T_6 + T_5}{2}$$

And H_{fg} is the enthalpy of vaporization at T_1, which can be got, be from steam tables. It should be converted to J/kg.

Using the values of h_i and h_o obtained from Eqs. (5) and (6) in Eq. (1) find the value of U_i in W/m2 K.

Drop wise Condensation:

Using the similar steps followed in the earlier case, U_i in drop wise condensation can also be evaluated.

In this case, Bulk mean temperature of cooling water, $T_w = \frac{T_1 + T_2}{2}$ and

Bulk mean temperature of condensing steam, $T_s = \frac{T_6 + T_4}{2}$
RESULTS:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Heat Transfer Coeff.in W/m²K</th>
<th>Film wise Condensation</th>
<th>Drop wise Condensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>h_i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>h_o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>U_i</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diagram of Heat and Mass Transfer System

Dropwise and Filmwise Condensation

Experimental setup
Work Sheet
Experiment -10

OBSERVATION TABLE:

<table>
<thead>
<tr>
<th>Capillary/Expansion Valve</th>
<th>t1 in s</th>
<th>Temperatures at key Points (°C)</th>
<th>P cond P2</th>
<th>P evap P1</th>
<th>Tw in °C</th>
<th>Rotameter LPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>t1, t2, t3, t4</td>
<td>psi</td>
<td>Psi</td>
<td>t5</td>
<td>t6</td>
</tr>
</tbody>
</table>

\(t_1, t_2, t_3 \) and \(t_4 \) are the temperature at states 1, 2, 3 and 4 respectively

DATA:

EMC = energy meter constant = 6000 rev / kWh
Electro mechanical efficiency of the motor – compressor combination, \(\eta_{ele} = 70\% \)
1 psi = 6.8027 kPa. or 6.8027 \(x 10^{-3} \) Mpa

CALCULATIONS:

A: Experimental COP:

Cooling capacity, \(W_c = \frac{m_w C_{pw} (t_{w1} - t_{w2})}{1000} \) W

Where \(m_w \) = mass flow rate of water in the Chiller
\(C_{pw} = 4190 \) J / kg °k, \(t_{w1} \) & \(t_{w2} \) water inlet and outlet temperature respectively.

(i) Rate of work input to compressor, \(W_c = \eta_{ele-mech} \times I \times V \) W

Where,

\(\eta_{ele-mech} = \) electro mechanical efficiency of the motor – compressor combination = 0.7
and \(I \) is the current in amp and \(V \) is the electrical potential difference in volts.

(ii) Alternatively,

\[I_{pc} = \frac{N \times 3600}{EMC \times t_1} \times \eta_{ele - mech} \] kW
PERFORMANCE TEST ON VAPOR COMPRESSION REFRIGERATION TEST RIG

AIM

To find (i) experimentally the COP of the refrigeration cycle and to (ii) evaluate the theoretical COP using the properties of the refrigerant, as read from the PH Chart corresponding to the experimentally observed states at the cardinal points of the cycle.

INTRODUCTION

The ideal thermodynamic cycle on which the refrigerator works is the vapor compression cycle shown in the following figure, on both T–s and p–h coordinates:

The cycle consists of four processes:

Process 1-2: The refrigerant vapor leaving the evaporator is compressed isentropically from state 1 to 2. In the ideal cycle state 1 corresponds to the saturated vapor state for the evaporator temperature. At state 2 the pressure is equal to the condenser pressure and entropy = entropy at state 1. Work compression, per kg refrigerant, W_c is given by:

$$W_c = (h_2 - h_1)$$
Where,

\[N = \text{number of revolutions of energy meter disc counted}, \ t_1 = \text{the time in seconds for N revolutions}, \ \text{EMC is energy meter constant in rev / kwh}. \]

\[\text{COP} = \frac{W_c}{I_{pc}} \]

B. Theoretical COP

\[\text{COP} = \frac{h_1 - h_4}{h_2 - h_1} \]

Read from p–h chart or property tables R 134 a, the following enthalpies and use them in the above relation to get the theoretical COP.

1. \(H_1 \) the enthalpy of the vapour entering the compressor (or leaving the evaporator) corresponding to \(p_{\text{evap}} \) and \(t_1. (P_1, T_1) \)
2. \(H_2 \) the enthalpy of the vapour leaving the compressor (or leaving the condenser) corresponding to \(p_{\text{cond}} \) and enthalpy \(s_2 = s_1 \) the enthalpy of vapor at state 1. \((P_2, T_2)\).
3. \(H_3 \) the enthalpy of the condensate corresponding to \(p_{\text{cond}} \) and \(t_3. (P_2, T_2)/(P_2, T_3) \)
4. \(H_4 \) the enthalpy of liquid entering the evaporator = \(h_3 . (P_1, T_4) \)

Do the above calculations for both capillary expansion and expansion valve and provide the final results in the following table:
Process 2-3: During the constant pressure process 2-3 the compressed vapor at state 2 is cooled to the saturation temperature t_c, also called the condensing temperature, and then condensed to saturated liquid at state 3. The magnitude of rejected by the condenser Q_c is given by:

$$Q_c = (h_2 - h_3) \text{ where } h_3 = h_{flp} = p_c$$

Process 3–4: The high pressure liquid at state 3, at the condenser pressure, is throttled during 3-4 to evaporator pressure at 4 by passing it through either an expansion valve or a capacity. During throttling process there is no change in enthalpy and hence,

Process 4 – 1: This is the process during which cooling is realized. Liquid entering the evaporator at state 4, picks up heat from the refrigerator at the evaporator temperature (t_e) and leaves the evaporator at state 1 as saturated vapor. The cooling produced per kg refrigerant, Q_e is given by:

$$Q_e = (h_1 - h_4) \text{ where } h_1 = h_{glp} = p_e$$

The COP of the refrigerator is given by:

$$\text{COP} = \frac{Q_e}{W_c} = \frac{h_1 - h_4}{h_2 - h_1}$$

EXPERIMENTAL TEST RIG:

The experimental set up is an actual vapor compression refrigeration system with provisions to measure pressures and temperature at various locations. Both options, capillary tube and an expansion valve, are available in the system to expand the refrigerant between the condenser and the evaporator. The COP can be computed, with the help of the experimental observations the refrigerant used in the system is R 134 a.

PROCEDURE:

1. Install the unit near a 230 v 5/15A power socket with proper earthing and a ½” water source
2. Connect the unit with the power, & water source respectively.
3. Start the flow into the chiller (evaporation) to any desired flow rate.
4. Switch “on” the console switch, now the entire indicator’s glow and the condenser cooling for start.
5. Select the type of expression by operating the switch to respective position.
6. Switch “on” the compressor switch
7. Now cooling takes place at the selected expansion device and starts cooling the water flowing through the chiller
Work Sheet
8. Wait for 30 minutes
9. Record the following readings:
 a) Time take for 10 Rev of energy meter disc in sec.
 b) Flow rate of water flowing through chiller in Lpm indicator by the rotameter
 c) Pressures P₁ and P₂ as indicated on the compound and pressure gauges respectively.
 d) Temperatures at locations T₁, T₂, T₃, T₄, T₅, & T₆.
10. Enter the observations into the tabular column
11. The experimental is to be conducted on both the expansion device is capillary & thermo static expansion valve individually

RESULTS:

<table>
<thead>
<tr>
<th>Expansion device</th>
<th>Experimental COP</th>
<th>Theoretical COP</th>
<th>Relative COP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capillary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expansion valve</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experiment -11

OBSERVATIONS AND CALCULATIONS:

CONVERSION FACTOR:

1 Pound / inch2 (PSI) = 6.894×10^{-3} MPa
1 Kg/Cm2 = 0.1MPa

1. Type of cycle = open / close
2. Compressor = on / off
3. Pre heater = on / off
4. Post heater = on / off
5. Steam generator = on / off
6. Temperature =
 \[T_1 = 0^\circ C \]
 \[T_2 = 0^\circ C \]
 \[T_3 = 0^\circ C \]
 \[T_4 = 0^\circ C \]
 \[T_5 = 0^\circ C \]
7. Before Cooling = \[T_6 = 0^\circ C \]
8. After Cooling = \[T_7 = 0^\circ C \]
9. Pressures:
 \[\text{LP (P1 & P4)} = \text{PSI} \]
 \[\text{HP (P2 & P3)} = \text{PSI} \]
10. Relative humidity:
 \[\text{Before Cooling} = \varphi_I \% \]
 \[\text{After Cooling} = \varphi_o \% \]
11. Air velocity = m/sec.
12. Power input to heater: \[I_p = \text{kW} \]
 (Energy meter)
13. Power input to compressor \[I_{pc} = \text{kW} \]
 (Voltage x Current)
AIR CONDITIONING TEST RIG

AIM:
1. To demonstrate working of air conditioning system.
2. To demonstrate cooling, heating and humidification processes.
3. To find the coefficient of performance.

INTRODUCTION:
The science of air conditioning deals with maintaining desirable internal air conditions irrespective of external atmospheric conditions. The factors involved in any air conditioning installation are:
 a) Temperature
 b) Humidity
 c) Air movement and circulation
 d) Air filtering, cleaning and purification

 The simultaneous control of these factors within the required limits is essential for human comfort or for any industrial application of the air conditioning system.

 In any air conditioning system, temperature and humidity are controlled by thermodynamic processes. Depending on the season, the air conditioning processes involve cooling, heating, humidification and dehumidification of air. Other aspects such as air movements, circulation, purification, etc. are obtained by installing suitable fans, blowers, ducting and filters.

 This equipment is designed to demonstrate different air conditioning processes such as cooling, heating, humidification, etc. required for different seasons of the year.

APPARATUS:
It consists of a cooling coil (Evaporator) which is a part of the vapour compression refrigeration system, working on Freon –22. In the and down stream of the cooling coil, steam injector is provided to increase humidity of air. The system is provided with fans, air duct and valve system to circulate air over the cooling coil and heaters to operate the system in both closed and open cycles. The system is instrumented with Temperature sensors, digital humidity indicators, pressure indicators and wind velocity indicators to determine the state of air moisture mixture during the operation of the air conditioning system.

 Following are the important components:
 1. Air Cooling system of the vapour compression refrigeration system consisting of
 2. Compressor, Condenser, throttle (expansive valve), pressure tube and the temperature Indicators with Selector switch and power meter.
 3. Air heaters – 2 sets (4 nos. of 200W each) with dimmer stat for control.
 4. Steam generator, which consists of immersion type heating coil.
 5. Suction fans 2 nos. (inlet & High speed)
CALCULATIONS:

A: Experimental COP:

Cooling capacity, \(W_c = \frac{m_a C_p_a (t_5 - t_7)}{1000} \) W

Where:
- \(m_a \) = mass flow rate of air = \(\upsilon \times A \times \rho \)
- \(C_p_a = 1.005 \text{ KJ} / \text{kg} \ast \text{K} \)
- \(A = 0.12 \text{m}^2 \)
- \(\rho = 1.225 \text{kg/m}^3 \)

Rate of work input to compressor, \(W_c = \eta_{ele-mech} \times I \times V \) W

Where,
- \(\eta_{ele-mech} \) = electro-mechanical efficiency of the motor – compressor combination = 0.7
- \(I \) is the current in amp and \(V \) is the electrical potential difference in volts.

\[
I_{pc} = \frac{N \times 3600}{EMC \times t} \times \eta_{ele-mech} \quad \text{kW}
\]

For Open Cycle,

Velocity \(\upsilon = \)
6. Door system to change the system to perform in both closed and open cycle modes.
7. Duct system with a shutter (close/open)
8. Air anemometer to measure air velocity and discharge from the duct.
9. Humidity indicator, digital type with 2 sensors and a selector switch for measurement of temperature and humidity before and after evaporator (cooling coil).
10. Temperature indicator with selector switches to measure refrigerant temperature and air temperature at the outlet of the duct.
11. Pressure gauges - (4 Nos.) at both upstream and downstream of compressor.
13. Pressure switches (HP/LP Cut out) to limit pressures upstream and downstream of compressor.
14. Thermostat.

OPERATIONAL PROCEDURE:

I. OPEN CYCLE – COOLING:

To proceed on this mode keep the handle of the inlet duct door in open cycle position and pull the outlet duct door out side.

a) Switch - on the mains and the console.
b) Open the shutter and set the valve to work the air conditioning system in the open cycle mode.
c) Switch – on the thermostat, keep at maximum
d) Switch – on the MCB
e) Switch – on the suction fans
f) Switch – on the compressor of the refrigeration unit. The cooling coil temperature begins to fall.
g) Observe temperature (T5, T6 and T7) at the outlet of the duct, before and after cooling coil until approximately steady state is reached.
h) Note the following:

\[T_1 = \text{Temperature of refrigerant after evaporator or inlet to compressor (°C)} \]
\[T_2 = \text{Temperature of refrigerant after compression (°C)} \]
\[T_3 = \text{Temperature of refrigerant after condensation (°C)} \]
\[T_4 = \text{Temperature of refrigerant after throttling (°C)} \]
\[T_5 = \text{Air inlet temperature, before cooling (°C)} \]
\[T_6 = \text{Air temperature, before cooling coil (°C)} \]
\[T_7 = \text{Air temperature, after cooling coil (°C)} \]
\[\text{HP = Pressure, High pressure side (PSI) (P2 & P3)} \]
\[\text{LP = Pressure, low pressure side (PSI) (P1 & P4)} \]
\[V = \text{Air velocity from air anemometer (m/sec)} \]
Where,

\[N = \text{number of revolutions of energy meter disc counted}, \ t = \text{time in seconds for } N \text{ revolutions}, \ EMC = \text{energy meter constant in Imp/ kwh.} \]

EMC = 3200 Imp/ kwh

\[\text{COP} = \frac{W_c}{I_{pc}} \]

B. Theoretical COP

\[\text{COP} = \frac{h_1 - h_4}{h_2 - h_1} \]

Read from p–h chart or property tables R -22, the following enthalpies and use them in the above relation to get the theoretical COP.

1. \(H_1 \) the enthalpy , found using \((P_1, T_1) \)
2. \(H_2 \) the enthalpy, found using \((P_2, T_2) \).
3. \(H_3 \) the enthalpy, found using \((P_2, T_3) \)
4. \(H_4 \) the enthalpy , found using \((P_1, T_4) \)

C. Relative COP

\[\text{Relative COP} = \frac{\text{Actual COP}}{\text{Theoretical COP}} \]
PC = Power input to the compressor (watts)
PH = Power input to the heater (watts) (winter conditioning)
\(\phi_i \) = Relative humidity of air at inlet (%) (Before evaporator)
\(\phi_o \) = Relative humidity of air at outlet (%) (After evaporator)

NOTE: - To vary the humidity during any of the two cycle of operation as certain sufficient water in the steam generator. Fill water through the funnel slowly until ‘on’ the steam generator for few seconds (50 to 60 sec) and switch off observe the increase in humidity on both sides of the evaporator

II. CLOSED CYCLE – COOLING:
To proceed on this mode keep the handle of the inlet duct door in closed cycle position and push the outlet duct door in side. (This change over can be made even during the compressor is working / continuation to the open cycle mode)

In case closed cycle cooling to be started afresh follow previous operational procedure, with respect to closed cycle cooling

III. SENSIBLE HEATING
OPEN CYCLE OPERATION:
Follow the procedure as in case of open cycle
1. Switch off compressor,
2. Switch on heater 2, and regulate

IV. SENSIBLE COOLING
OPEN CYCLE OPERATION:
Follow the procedure as in case of open cycle cooling
1) Switch off Heater
2) Switch on Compressor
3) Switch on Blower

V. HUMIDIFICATION
OPEN CYCLE OPERATION:
Follow the procedure as in case of open cycle cooling
1) Switch OFF Compressor
2) switch ON the (Steam Generate) & for about 50 to 60 sec and switch “off”
3) Switch on Blower – air start flowing in duct
Work Sheet
WORKING PRINCIPLE:

Definition of some psychometric processes:
- **Sensible cooling**: is a process where air is cooled without changing specific humidity.
- **Sensible heating**: is a process where air is heated without changing specific humidity.
- **Humidification**: is a process where moisture is added to the air without changing the dry bulb temperature.

RESULT:

The Coefficient of Performance is
Experiment -12

SPECIFICATION:
Material : Copper rod.
Diameter, d : 25 mm (0.025 m)
Length, L : 500 mm (0.5m)
Thermometer Spacing : 75 mm (0.075m)
Ammeter reading : (amps)
Voltmeter reading : (volts)
Q, heat supplied : $V \cdot A = W$ (watts)
Room Temp, T_R : 0C

OBSERVATION TABLE:

<table>
<thead>
<tr>
<th>Dist / Time</th>
<th>At Distance (near the heater) X = 0</th>
<th>At X = 0.1 m</th>
<th>At X = 0.2 m</th>
<th>At X = 0.3 m</th>
<th>At X = 0.4 m</th>
<th>At X = 0.5 m</th>
<th>At X = 0.6 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time T (secs)</td>
<td>T_1</td>
<td>T_2</td>
<td>T_3</td>
<td>T_4</td>
<td>T_5</td>
<td>T_6</td>
<td>T_7</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T experimental 0C reading of temperatures obtained from above at any particular time
(say $T = 900$ secs)
TRANSIENT HEAT CONDUCTION

AIM:
To obtain temperature profile for conduction through a copper rod heated by a constant source and to compare theoretically predicted temperature distribution under transient conduction.

APPARATUS:
Transient heat conduction setup; thermocouples; stop watch/clock.

INTRODUCTION:
A Heat transfer process which is time dependent is designated as an unsteady state or transient heat transfer. There are a large numbers of situations where changes in condition result in transient temperature distribution. Unsteady state heat transfer generally occurs before steady state operating conditions.

Transient temperature distribution results in manufacture of bricks, cooking and freezing of food and in heat and cold treatment of metals.

The temperature distribution for a body subjected to constant heat flux condition is given by

\[T(X,t) = T_i + \frac{(2Q)}{K*A} \sqrt{\frac{\alpha*\tau}{\pi}} e^{-\frac{Z^2}{\alpha*\tau}} + Z*erf(Z) \]

EXPERIMENTAL SET-UP:
The experimental setup consists of a metal rod, one end of which is heated by an electrical heater while the other end projects inside a cooling water jacket. The whole rod is insulated with asbestos rope and covered with S.S. Sheet.

Six thermocouples are placed on the rod for temperature measurement.

The heater is provided with a Dimmer stat for controlling the heat input, water under the constant head is circulated through the jacket and its flow rate and temperature rise are measured using Rotameter and thermocouples.

PROCEDURE:
1. Heat the cylindrical shaped material (copper rod) by electrical heating at Constant rate by adjusting the current and voltage
2. Adjust the flow of water to 2-3 liters/min using rotameter.
3. Note the readings of the Ammeter and the Voltmeter.
4. Note down the initial temperature at 6 different positions, say, at distances 0.1, 0.2 & 0.3 m from the heat source.
5. Start the stop watch and note the temperature indicated by the thermocouples at various points recorded at 5 min. interval.
6. Continue to note the temperature till constant temperature is attained.
7. The calculations are performed to obtain temperature profile and compared with theoretical values obtained.
CALCULATIONS:

Voltmeter reading V: (volts)

Ammeter reading I: (amps)

Total heat supplied Q

\[Q = V \times I = \text{(watts)} \]

Thermal diffusivity of the material is calculated by

\[\alpha = \frac{K}{\rho \ C_p} = \text{m}^2/\text{s} \]

\[\rho = \text{Density of material (Copper)} = 8954 \text{ Kg/m}^3 \]

\[C_p = \text{Specific heat of material (Copper)} = 381 \text{ J/Kg.K} \]

\[K = \text{Thermal conductivity (Copper)} = 386 \text{ W/m.K} \]

Cross sectional area of the copper rod, A

\[A = \frac{\pi \ d^2}{4} \]

Diameter, $d = 0.025 \text{ m}$

Calculate the value of Z using the formula:

\[Z = \frac{X}{2 \sqrt{\alpha \ T}} \]

Where T is the time.

From this, calculate the error function value of Z from the Data Hand Book i.e., Erf(Z) taking particular time (say $T = 900 \text{ secs}$) substitute in the T theoretical equation.

Temperature (^0C) T experimental = Values are obtained detained directly from the experiment at different time.
8. **Temperature Profile:** Theoretical temperature and experimentally observed temperature versus distance from the hot source is drawn on a graph sheet for 15 & 30 minutes time intervals.

RESULT:

The heat conduction experiment is conducted under transient conditions and the temperature conduction through the rod heated by a constant heat flux is obtained and compared with theoretical valves.
Observations:

<table>
<thead>
<tr>
<th>Time in Min.</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>T_4</th>
<th>T_5</th>
<th>T_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Time (T) secs</th>
<th>Distance X m</th>
<th>Temperature T experimental $^\circ$C</th>
<th>Z</th>
<th>Erf(Z)</th>
<th>Temperature T experimental $^\circ$C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>300</td>
<td>X1 = 0 (near the heater) X2 = 0.1 X3 = 0.2 X4 = 0.3 X5 = 0.4 X6 = 0.5 X7 = 0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>480</td>
<td>X1 = 0 X2 = 0.1 X3 = 0.2 X4 = 0.3 X5 = 0.4 X6 = 0.5 X7 = 0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Work Sheet
Plot a graph of temperature v/s distance at a particular time (T) (say $T = 900$ secs)

Similarly it can be plotted for different time (say $T = 3000$ secs)

TEMPERATURE POINTS:

- $T_1 =$ temperature at distance $X_1 = 0$ from heater (next to the heater)
- $T_2 =$ Temperature at distance $X_2 = 0.1 \text{ m}$ from heater
- $T_3 =$ Temperature at distance $X_3 = 0.2 \text{ m}$ from heater
- $T_4 =$ Temperature at distance $X_4 = 0.3 \text{ m}$ from heater
- $T_5 =$ Temperature at distance $X_5 = 0.4 \text{ m}$ from heater
- $T_6 =$ Temperature at distance $X_6 = 0.5 \text{ m}$ from heater
- $T_7 =$ Temperature at distance $X_7 = 0.6 \text{ m}$ from heater
- $T_8 =$ Water Inlet Temperature.
Work Sheet
Experiment -13

SPECIFICATIONS

1. Length of the nichrome wire : 90mm
2. Diameter of the nichrome wire: 0.345

OBSERVATION TABLE

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Temp in °C</th>
<th>Voltage V Volts</th>
<th>Current I amps</th>
<th>Heat Input q=V*I watts</th>
<th>Heat Flux q/A W/m²</th>
<th>Bulk/Excess Temp. ΔT=(Tₛ-Tₖ)</th>
</tr>
</thead>
</table>

CALCULATIONS

The equation for water boiling on a horizontal submerged surface is given by

\[
H = \text{Heat transfer coefficient}
\]
\[
H = 1.54(q/A)^{0.75} = 5.58(ΔT)^3 \quad \text{(Eqn from Data Hand Book)}
\]

\[
ΔT = [(1.54(q/A)^{0.75})/5.58]^{1/3}
\]

Where q= Heat input= V*I = Watts

A= Surface area of the wire = Π*d* L = m²

Tabulate the readings of q/A and ΔT as shown.
Plot graph of q/A Vs ΔT up to burnout position.
CRITICAL HEAT FLUX APPARATUS

AIM:
To study the formation of bubbles under pool boiling process and to draw the graph of the Heat Flux Vs Bulk Temperature up to burnout (critical value) condition.

INTRODUCTION:

BOILING HEAT TRANSFER PHENOMENA
In general boiling a convection process involving a change in phase from liquid to vapour. Boiling may occur when a liquid is in contact with a surface maintained at temperature higher than the saturation temperature of the liquid.

POOL BOILING
If heat is added to a liquid from a submerged solid surface, the boiling process is referred to as pool boiling. In this process the vapour produced may form bubbles which grow and subsequently detach themselves from the surface, rising to the free surface due to buoyancy effects.

PROCEDURE
1. Connect the nichrome test wire to heat terminals and place it in the container having distilled water.
2. Switch on the main heater and heat the water to the desired temperature and then switch OFF the main heater.
3. Now switch ON the test heater. Gradually increase the voltage across the test heater by using the dimmer stat.
4. Repeat the experiment for different bulk temperatures of water by replacing the test heater wire.

RESULT
The critical temperature of bubbles under pool boiling curve is
VIVA QUESTIONS AND ANSWERS

1. Define Heat transfer?
 Heat transfer can be defined as the transmission of energy from one region to another region to temperature difference.

2. What are the modes of heat transfer?
 1. Conduction
 2. Convection
 3. Radiation

3. What is conduction?
 Heat conduction is a mechanism of heat transfer from a region of high temperature to a region of low temperature within a medium (Solid, liquid or Gases) or different medium in direct physical contact.

 In conduction, energy exchange takes place by the kinematics motion or direct impact of molecules. Pure conduction is found only in solids.

4. State Fourier’s law of conduction.
 The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature gradient in that direction.

5. Define Thermal conductivity.
 Thermal conductivity is defined as the ability of a substance to conduct heat.

6. List down the three types of boundary conditions.
 1. Prescribed temperature.
 2. Prescribed heat flux.
 3. Convection boundary conditions.

7. Define convection.
 Convection is a process of heat transfer that will occur between solid surface and a fluid medium when they are at different temperatures. Convection is possible only in the presence of fluid medium.

8. Define Radiation
 The heat transfer from one body to another without any transmitting medium is known as radiation. It is an electromagnetic wave phenomenon.

9. State Newton’s law of cooling or convection law.
 Heat transfer by convection is given by Newton’s law of cooling
 \[Q = hA(T_s - T) \]
 Where:-
10. Define overall heat transfer co-efficient.
The overall heat transfer by combined modes is usually expressed in terms of an overall conductance or overall heat transfer co-efficient
Heat transfer, \(Q \)

11. Define fins or extended surfaces.
It is possible to increase the heat transfer rate by increasing the surface of heat transfer. The surfaces used for increasing heat transfer are called extended surfaces sometimes known as fins

12. State the applications of fins.
2. Cooling of motor cycle engines.
3. Cooling of small capacity compressors
4. Cooling of transformers

The efficiency of a fin is defined as the ratio of actual heat transferred to the maximum possible to heat transferred by the fin.
\[\eta = \frac{Q_{\text{fin}}}{Q_{\text{max}}} \]

Fin effectiveness is the ratio of heat transfer with fin to that without fin
\[\text{Fin effectiveness} = \frac{Q_{\text{with fin}}}{Q_{\text{without fin}}} \]

15. What is meant by steady state heat conduction?
If the temperature of a body does not vary with time, it is said to be in a steady state and that type of conduction is known as steady state heat conduction.

16. What is meant by transient heat conduction or unsteady state conduction?
If the temperature of a body varies with time, it is said to be in a transient state and that type of conduction is known as transient heat conduction or unsteady state conduction

17. What is Periodic heat flow?
In Periodic heat flow, the temperature varies on a regular basis Example;
2. Surface of earth during a period of 24 hours

18. What is non Periodic heat flow?
In non-periodic heat flow, the temperature at any point within the system varies non-linearly with time. Example:
1. Heating of an ingot in furnace.
2. Cooling of bars

19. What is meant by Newtonian heating or cooling process?
The process in which the internal resistance is assumed as negligible in comparison with its surface resistance is known as Newtonian heating or cooling process.

20. What is meant by Lumped heat analysis?
In a Newtonian heating or cooling process, the temperature throughout the solid is considered to be uniform at a given time. Such an analysis is called Lumped heat capacity analysis.

21. What is meant by infinite solid?
A solid which extends itself infinitely in all directions of space is known as infinite solid. In infinite solids, the Biot number value is in between 0.1 and 100.0.1 < Bi < 100

22. Define Biot number.
It is defined as the ratio of internal conductive resistance to the surface conductive resistance.

\[Bi = \frac{\text{Internal conductive resistance}}{\text{Surface conductive resistance}} \]

23. What is the significance of Biot number?
Biot number is used to find Lumped heat analysis, Semi infinite solids and infinite solids. If Bi < 0.1 Lumped heat analysis. Bi = 0.1 < Bi < 100

24. What are the factors affecting the thermal conductivity?
1. Moisture
2. Density of material
3. Pressure
4. Temperature
5. Structural of material.

25. What are Heislers charts?
In Heislers chart, the solutions for temperature distributions and heat flows in plane walls, long cylinders and spheres with finite internal and surface resistance are presented. Heislers charts are nothing but a analytical solutions in the form of graphs.
26. **Explain the significance of thermal diffusivity.**

The physical significance of thermal diffusivity is that it tells us how fast heat is propagated or it diffuses through a material during changes of temperature with time.

27. **What are the types of heat exchanger?**

 The types of heat exchanger are as follows.
 1. Direct contact heat exchangers.
 2. Indirect contact heat exchangers
 3. Surface heat exchangers
 4. Parallel flow heat exchanger

28. **What is meant by LMTD?**

 We know that the temperature difference between the hot and cold fluids in the heat exchangers varies from point to point. In addition various modes of heat exchanger are involved. Therefore based on concept of appropriate mean temperature difference, also called logarithmic mean temperature difference.

29. **What is meant Fouling factor?**

 We know, the surfaces of heat exchangers do not remain clean after it has been in use for some time. The surface become fouled with scaling or deposits. The effect of these deposits affecting the value of overall heat transfer co efficient. This effect is taken care of by introducing an additional thermal resistance called fouling resistance.

30. **What is black body?**

 Black body is an ideal surface having the following properties.
 1. A black body absorbs all incident radiation, regardless of wave length and direction.
 2. For a prescribed temperature and wave length, no surface can emit more energy than black body.
REFERENCES

- Heat transfer, a practical approach, Yunus A- Cengel Tata Mc Graw Hill.