DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

BE - VII SEMESTER

MACHINE LEARNING LABORATORY MANUAL - 15CSL76

ACADEMIC YEAR – 2018-19
PROGRAMME OUTCOMES (PO’s)

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
Machine learning

Machine learning is a subset of artificial intelligence in the field of computer science that often uses statistical techniques to give computers the ability to "learn" (i.e., progressively improve performance on a specific task) with data, without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome.

Machine learning tasks

Machine learning tasks are typically classified into two broad categories, depending on whether there is a learning "signal" or "feedback" available to a learning system:

Supervised learning: The computer is presented with example inputs and their desired outputs, given by a "teacher", and the goal is to learn a general rule that maps inputs to outputs. As special cases, the input signal can be only partially available, or restricted to special feedback:

Semi-supervised learning: the computer is given only an incomplete training signal: a training set with some (often many) of the target outputs missing.

Active learning: the computer can only obtain training labels for a limited set of instances (based on a budget), and also has to optimize its choice of objects to acquire labels for. When used interactively, these can be presented to the user for labeling.

Reinforcement learning: training data (in form of rewards and punishments) is given only as feedback to the program's actions in a dynamic environment, such as driving a vehicle or playing a game against an opponent.

Unsupervised learning: No labels are given to the learning algorithm, leaving it on its own to find structure in its input. Unsupervised learning can be a goal in itself (discovering hidden patterns in data) or a means towards an end (feature learning).
MACHINE LEARNING LABORATORY
[As per Choice Based Credit System (CBCS) scheme]
(Effective from the academic year 2016 -2017)
SEMESTER – VII

Subject Code 15CSL76 IA Marks 20
Number of Lecture Hours/Week 01I + 02P Exam Marks 80
Total Number of Lecture Hours 40 Exam Hours 03

CREDITS – 02

Course objectives: This course will enable students to
1. Make use of Data sets in implementing the machine learning algorithms
2. Implement the machine learning concepts and algorithms in any suitable language of choice.

Description (If any):
1. The programs can be implemented in either JAVA or Python.
2. For Problems 1 to 6 and 10, programs are to be developed without using the built-in classes or APIs of Java/Python.
3. Data sets can be taken from standard repositories (https://archive.ics.uci.edu/ml/datasets.html) or constructed by the students.

Lab Experiments:
1. Implement and demonstrate the **FIND-S algorithm** for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.
2. For a given set of training data examples stored in a .CSV file, implement and demonstrate the **Candidate-Elimination algorithm** to output a description of the set of all hypotheses consistent with the training examples.
3. Write a program to demonstrate the working of the decision tree based **ID3 algorithm**. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
4. Build an Artificial Neural Network by implementing the **Backpropagation algorithm** and test the same using appropriate data sets.
5. Write a program to implement the **naïve Bayesian classifier** for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
6. Assuming a set of documents that need to be classified, use the **naïve Bayesian Classifier** model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.
7. Write a program to construct a **Bayesian network** considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.
8. Apply **EM algorithm** to cluster a set of data stored in a .CSV file. Use the same data set for clustering using **k-Means algorithm**. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.
9. Write a program to implement the **k-Nearest Neighbour algorithm** to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.
10. Implement the non-parametric **Locally Weighted Regression algorithm** in order to fit data points. Select appropriate data set for your experiment and draw graphs.
1. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.

```python
import csv

with open('tennis.csv', 'r') as f:
    reader = csv.reader(f)
    your_list = list(reader)

h = [['0', '0', '0', '0', '0', '0']]

for i in your_list:
    print(i)
    if i[-1] == "True":
        j = 0
        for x in i:
            if x != "True":
                if x != h[0][j] and h[0][j] == '0':
                    h[0][j] = x
                elif x != h[0][j] and h[0][j] != '0':
                    h[0][j] = '?'
                else:
                    pass
            j = j + 1
    print("Most specific hypothesis is")
    print(h)

Output

'Sunny', 'Warm', 'Normal', 'Strong', 'Warm', 'Same', True
'Sunny', 'Warm', 'High', 'Strong', 'Warm', 'Same', True
'Rainy', 'Cold', 'High', 'Strong', 'Warm', 'Change', False
'Sunny', 'Warm', 'High', 'Strong', 'Cool', 'Change', True

Maximally Specific set
[['Sunny', 'Warm', '?', 'Strong', '?', '?']]
```
2. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

```python
class Holder:
    factors={} #Initialize an empty dictionary
    attributes = () #declaration of dictionaries parameters with an arbitrary length

    Constructor of class Holder holding two parameters,
    self refers to the instance of the class
    
def __init__(self,attr):
        self.attributes = attr
        for i in attr:
            self.factors[i]=[]

    def add_values(self,factor,values):
        self.factors[factor]=values

class CandidateElimination:
    Positive={} #Initialize positive empty dictionary
    Negative={} #Initialize negative empty dictionary

def __init__(self,data,fact):
    self.num_factors = len(data[0][0])
    self.factors = fact.factors
    self.attr = fact.attributes
    self.dataset = data

def run_algorithm(self):
    
    Initialize the specific and general boundaries, and loop the dataset against the algorithm
    
    G = self.initializeG()
    S = self.initializeS()

    Programmaticallly populate list in the iterating variable trial_set
    
    count=0
    for trial_set in self.dataset:
        if self.is_positive(trial_set): #if trial set/example consists of positive examples
            G = self.remove_inconsistent_G(G,trial_set[0]) #remove inconsistent data from the general boundary
```
S_new = S[:]
initialize the dictionary with no key-value pair
print (S_new)
for s in S:
 if not self.consistent(s, trial_set[0]):
 S_new.remove(s)
 generalization = self.generalize_inconsistent_S(s, trial_set[0])
 generalization = self.get_general(generalization, G)
 if generalization:
 S_new.append(generalization)
S = S_new[:]
S = self.remove_more_general(S)
print(S)

else:
if it is negative
 S = self.remove_inconsistent_S(S, trial_set[0])
 # remove inconsistent data from the specific boundary
 G_new = G[:]
 # initialize the dictionary with no key-value pair (dataset can take any value)
 print (G_new)
 for g in G:
 if self.consistent(g, trial_set[0]):
 G_new.remove(g)
 specializations = self.specialize_inconsistent_G(g, trial_set[0])
 specializations += self.get_specific(specializations, S)
 if specializations != []:
 G_new += specializationss
 G = G_new[:]
 G = self.remove_more_specific(G)
print(G)

print (S)
print (G)

def initializeS(self):
 ''' Initialize the specific boundary ''
 S = tuple([- for factor in range(self.num_factors)])
 # 6 constraints in the vector
 return [S]

def initializeG(self):
 ''' Initialize the general boundary ''
 G = tuple(['?' for factor in range(self.num_factors)])
 # 6 constraints in the vector
 return [G]

def is_positive(self, trial_set):
 ''' Check if a given training trial_set is positive ''
 if trial_set[1] == 'Y':
return True
elif trial_set[1] == 'N':
 return False
else:
 raise TypeError("invalid target value")

def match_factor(self,value1,value2):
 """ Check for the factors values match,
 necessary while checking the consistency of
 training trial_set with the hypothesis ""
 if value1 == '?' or value2 == '?':
 return True
 elif value1 == value2 :
 return True
 return False

def consistent(self,hypothesis,instance):
 """ Check whether the instance is part of the hypothesis ""
 for i,factor in enumerate(hypothesis):
 if not self.match_factor(factor,instance[i]):
 return False
 return True

def remove_inconsistent_G(self,hypotheses,instance):
 """ For a positive trial_set, the hypotheses in G
 inconsistent with it should be removed ""
 G_new = hypotheses[:]

 for g in hypotheses:
 if not self.consistent(g,instance):
 G_new.remove(g)
 return G_new

def remove_inconsistent_S(self,hypotheses,instance):
 """ For a negative trial_set, the hypotheses in S
 inconsistent with it should be removed ""
 S_new = hypotheses[:]
 for s in hypotheses:
 if self.consistent(s,instance):
 S_new.remove(s)
 return S_new

def remove_more_general(self,hypotheses):
 """ After generalizing S for a positive trial_set, the hypothesis in S
 general than others in S should be removed ""
 S_new = hypotheses[:]
 for old in hypotheses:
for new in S_new:
 if old!=new and self.more_general(new,old):
 S_new.remove(new)
return S_new

def remove_more_specific(self,hypotheses):
 """ After specializing G for a negative trial_set, the hypothesis in G specific than others in G should be removed ""
 G_new = hypotheses[:]
 for old in hypotheses:
 for new in G_new:
 if old!=new and self.more_specific(new,old):
 G_new.remove(new)
 return G_new

def generalize_inconsistent_S(self,hypothesis,instance):
 """ When a inconsistent hypothesis for positive trial_set is seen in the specific boundary S, it should be generalized to be consistent with the trial_set ... we will get one hypothesis"
 hypo = list(hypothesis) # convert tuple to list for mutability
 for i,factor in enumerate(hypo):
 if factor == '-':
 hypo[i] = instance[i]
 elif not self.match_factor(factor,instance[i]):
 hypo[i] = '?'
 generalization = tuple(hypo) # convert list back to tuple for immutability
 return generalization

def specialize_inconsistent_G(self,hypothesis,instance):
 """ When a inconsistent hypothesis for negative trial_set is seen in the general boundary G should be specialized to be consistent with the trial_set.. we will get a set of hypotheses ""
 specializations = []
 hypo = list(hypothesis) # convert tuple to list for mutability
 for i,factor in enumerate(hypo):
 if factor == '?':
 values = self.factors[self.attr[i]]
 for j in values:
 if instance[i] != j:
 hyp=hypo[:]
 hyp[i]=j
 hyp=tuple(hyp) # convert list back to tuple for immutability
 specializations.append(hyp)
 return specializations
def get_general(self, generalization, G):
 ''' Checks if there is more general hypothesis in G
 for a generalization of inconsistent hypothesis in S
 in case of positive trial_set and returns valid generalization '''
 for g in G:
 if self.more_general(g, generalization):
 return generalization
 return None

def get_specific(self, specializations, S):
 ''' Checks if there is
 more specific hypothesis in S
 for each of hypothesis in specializations of an
 inconsistent hypothesis in G in case of negative trial_set
 and return the valid specializations'''
 valid_specializations = []
 for hypo in specializations:
 for s in S:
 if self.more_specific(s, hypo) or s == self.initializeS()[0]:
 valid_specializations.append(hypo)
 return valid_specializations

def exists_general(self, hypothesis, G):
 '''Used to check if there exists a more general hypothesis in
 general boundary for version space'''
 for g in G:
 if self.more_general(g, hypothesis):
 return True
 return False

def exists_specific(self, hypothesis, S):
 '''Used to check if there exists a more specific hypothesis in
 general boundary for version space'''
 for s in S:
 if self.more_specific(s, hypothesis):
 return True
 return False

def more_general(self, hyp1, hyp2):
 ''' Check whether hyp1 is more general than hyp2 '''
 hyp = zip(hyp1, hyp2)
 for i, j in hyp:
 if i == '?':
 continue
elif j == '?':
 if i != '?':
 return False
elif i != j:
 return False
else:
 continue
return True

def more_specific(self, hyp1, hyp2):
 ''' hyp1 more specific than hyp2 is
 equivalent to hyp2 being more general than hyp1 '''
 return self.more_general(hyp2, hyp1)

dataset = [(['sunny', 'warm', 'normal', 'strong', 'warm', 'same'], 'Y'),
 (['sunny', 'warm', 'high', 'strong', 'warm', 'same'], 'Y'),
 (['rainy', 'cold', 'high', 'strong', 'warm', 'change'], 'N'),
 (['sunny', 'warm', 'high', 'strong', 'cold', 'change'], 'Y')]
attributes = ('Sky', 'Temp', 'Humidity', 'Wind', 'Water', 'Forecast')
f = Holder(attributes)
f.add_values('Sky', ('sunny', 'rainy', 'cloudy')) # sky can be sunny rainy or cloudy
f.add_values('Temp', ('cold', 'warm')) # Temp can be sunny cold or warm
f.add_values('Humidity', ('normal', 'high')) # Humidity can be normal or high
f.add_values('Wind', ('weak', 'strong')) # wind can be weak or strong
f.add_values('Water', ('warm', 'cold')) # water can be warm or cold
f.add_values('Forecast', ('same', 'change')) # Forecast can be same or change
a = CandidateElimination(dataset, f) # pass the dataset to the algorithm class and call the run algorithm method
a.run_algorithm()

Output

[('sunny', 'warm', 'normal', 'strong', 'warm', 'same')]
[('sunny', 'warm', 'normal', 'strong', 'warm', 'same')]
[('sunny', 'warm', '?', 'strong', 'warm', 'same')]
[('?', '?', '?', '?', '?', '?')]
[('sunny', '?', '?', '?', '?', '?'), ('?', 'warm', '?', '?', '?', '?'), ('?', '?', '?', '?', '?', '?'), ('?', '?', '?', '?', '?', 'same')]
[('sunny', 'warm', '?', 'strong', 'warm', 'same')]
[('sunny', 'warm', '?', 'strong', '?', '?')]
[('sunny', 'warm', '?', 'strong', '?', '?')]
[('sunny', '?', '?', '?', '?', '?')]
[('sunny', '?', '?', '?', '?', '?'), ('?', 'warm', '?', '?', '?', '?')]
3. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

```python
import numpy as np
import math
from data_loader import read_data

class Node:
    def __init__(self, attribute):
        self.attribute = attribute
        self.children = []
        self.answer = ""

    def __str__(self):
        return self.attribute

def subtables(data, col, delete):
    dict = {}
    items = np.unique(data[:, col])
    count = np.zeros((items.shape[0], 1), dtype=np.int32)
    for x in range(items.shape[0]):
        for y in range(data.shape[0]):
            if data[y, col] == items[x]:
                count[x] += 1
    for x in range(items.shape[0]):
        dict[items[x]] = np.empty((int(count[x]), data.shape[1]), dtype="|S32")
    pos = 0
    for y in range(data.shape[0]):
        if data[y, col] == items[x]:
            dict[items[x]][pos] = data[y]
            pos += 1
    if delete:
        dict[items[x]] = np.delete(dict[items[x]], col, 1)
    return items, dict

def entropy(S):
    items = np.unique(S)
    if items.size == 1:
```

```python
# remaining code
```
return 0

counts = np.zeros((items.shape[0], 1))
sums = 0

for x in range(items.shape[0]):
 counts[x] = sum(S == items[x]) / (S.size * 1.0)

for count in counts:
 sums += -1 * count * math.log(count, 2)
return sums

def gain_ratio(data, col):
 items, dict = subtables(data, col, delete=False)

 total_size = data.shape[0]
 entropies = np.zeros((items.shape[0], 1))
 intrinsic = np.zeros((items.shape[0], 1))
 for x in range(items.shape[0]):
 ratio = dict[items[x]].shape[0] / (total_size * 1.0)
 entropies[x] = ratio * entropy(dict[items[x]][:, -1])
 intrinsic[x] = ratio * math.log(ratio, 2)

 total_entropy = entropy(data[:, -1])
 iv = -1 * sum(intrinsic)

 for x in range(entropies.shape[0]):
 total_entropy -= entropies[x]
 return total_entropy / iv

def create_node(data, metadata):
 if (np.unique(data[:, -1])).shape[0] == 1:
 node = Node(""")
 node.answer = np.unique(data[:, -1])[0]
 return node

 gains = np.zeros((data.shape[1] - 1, 1))
 for col in range(data.shape[1] - 1):
 gains[col] = gain_ratio(data, col)

 split = np.argmax(gains)

 node = Node(metadata[split])
metadata = np.delete(metadata, split, 0)
items, dict = subtables(data, split, delete=True)

for x in range(items.shape[0]):
 child = create_node(dict[items[x]], metadata)
 node.children.append((items[x], child))

return node

def empty(size):
 s = ""
 for x in range(size):
 s += " "
 return s

def print_tree(node, level):
 if node.answer != "":
 print(empty(level), node.answer)
 return
 print(empty(level), node.attribute)
 for value, n in node.children:
 print(empty(level + 1), value)
 print_tree(n, level + 2)

metadata, traindata = read_data("tennis.csv")
data = np.array(traindata)
node = create_node(data, metadata)
print_tree(node, 0)

Data_loader.py

import csv
def read_data(filename):
 with open(filename, 'r') as csvfile:
 datareader = csv.reader(csvfile, delimiter=',')
 headers = next(datareader)
 metadata = []
 traindata = []
 for name in headers:
 metadata.append(name)
 for row in datareader:
 traindata.append(row)

 return (metadata, traindata)
Tennis.csv

outlook,temperature,humidity,wind,answer
sunny,hot,high,weak,no
sunny,hot,high,strong,no
overcast,hot,high,weak,yes
rain,mild,high,weak,yes
rain,cool,normal,weak,yes
rain,cool,normal,strong,no
overcast,cool,normal,strong,yes
sunny,mild,high,weak,no
sunny,cool,normal,weak,yes
rain,mild,normal,weak,yes
sunny,mild,normal,strong,yes
overcast,mild,high,weak,yes
overcast,mild,high,strong,yes
overcast,mild,high,strong,no
rain,mild,high,strong,no

Output

outlook
overcast
b'yes'

rain
wind
b'strong'
b'no'
b'weak'
b'yes'
sunny
humidity
b'high'
b'no'
b'normal'
b'yes
4. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.

```python
import numpy as np
X = np.array(([2, 9], [1, 5], [3, 6]), dtype=float)
y = np.array(([92], [86], [89]), dtype=float)
X = X/np.amax(X,axis=0) # maximum of X array longitudinally
y = y/100

#Sigmoid Function
def sigmoid (x):
    return 1/(1 + np.exp(-x))

#Derivative of Sigmoid Function
def derivatives_sigmoid(x):
    return x * (1 - x)

#Variable initialization
epoch=7000 #Setting training iterations
lr=0.1 #Setting learning rate
inputlayer_neurons = 2 #number of features in data set
hiddenlayer_neurons = 3 #number of hidden layers neurons
output_neurons = 1 #number of neurons at output layer

#weight and bias initialization
wh=np.random.uniform(size=(inputlayer_neurons,hiddenlayer_neurons))
bh=np.random.uniform(size=(1,hiddenlayer_neurons))
wout=np.random.uniform(size=(hiddenlayer_neurons,output_neurons))
bout=np.random.uniform(size=(1,output_neurons))

for i in range(epoch):
    #Forward Propogation
    hinp1=np.dot(X,wh)
    hinp=hinp1 + bh
    hlayer_act = sigmoid(hinp)
    outinp1=np.dot(hlayer_act,wout)
    outinp= outinp1+ bout
    output = sigmoid(outinp)

    #Backpropagation
    EO = y-output
    outgrad = derivatives_sigmoid(output)
    d_output = EO* outgrad
    EH = d_output.dot(wout.T)
    hiddengrad = derivatives_sigmoid(hlayer_act)#how much hidden layer wts contributed to error
```

d_hiddenlayer = EH * hiddengrad
wout += hlayer_act.T.dot(d_output) * lr # dotproduct of nextlayererror and currentlayerop
bout += np.sum(d_output, axis=0, keepdims=True) * lr
wh += X.T.dot(d_hiddenlayer) * lr
bh += np.sum(d_hiddenlayer, axis=0, keepdims=True) * lr
print("Input: \n" + str(X))
print("Actual Output: \n" + str(y))
print("Predicted Output: \n", output)

output

Input:
[[0.66666667 1.]
 [0.33333333 0.55555556]
 [1. 0.66666667]]
Actual Output:
[[0.92]
 [0.86]
 [0.89]]
Predicted Output:
[[0.89559591]
 [0.88142069]
 [0.8928407]]
5. Write a program to implement the naïve Bayesian classifier for a sample training dataset stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

```python
import csv
import random
import math

def loadCsv(filename):
    lines = csv.reader(open(filename, "r"));
    dataset = list(lines)
    for i in range(len(dataset)):
        # converting strings into numbers for processing
        dataset[i] = [float(x) for x in dataset[i]]
    return dataset

def splitDataset(dataset, splitRatio):
    # 67% training size
    trainSize = int(len(dataset) * splitRatio);
    trainSet = []
    copy = list(dataset);
    while len(trainSet) < trainSize:
        # generate indices for the dataset list randomly to pick ele for training data
        index = random.randrange(len(copy));
        trainSet.append(copy.pop(index))
    return [trainSet, copy]

def separateByClass(dataset):
    separated = {
        # creates a dictionary of classes 1 and 0 where the values are the instances belonging to each class
        for i in range(len(dataset)):
            vector = dataset[i]
            if (vector[-1] not in separated):
                separated[vector[-1]] = []
            separated[vector[-1]].append(vector)
    return separated

def mean(numbers):
    return sum(numbers)/float(len(numbers))

def stdev(numbers):
    avg = mean(numbers)
    variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
    return math.sqrt(variance)
```
def summarize(dataset):
 summaries = [(mean(attribute), stdev(attribute)) for attribute in zip(*dataset)];
 del summaries[-1]
 return summaries

def summarizeByClass(dataset):
 separated = separateByClass(dataset);
 summaries = {}
 for classValue, instances in separated.items():
 summaries[classValue] = summarize(instances)
 return summaries

def calculateProbability(x, mean, stdev):
 exponent = math.exp((-math.pow(x-mean,2)/(2*math.pow(stdev,2))))
 return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent

def calculateClassProbabilities(summaries, inputVector):
 probabilities = {}
 for classValue, classSummaries in summaries.items():
 probabilities[classValue] = 1
 for i in range(len(classSummaries)):
 mean, stdev = classSummaries[i] #take mean and sd of every attribute
 x = inputVector[i] #testvector's first attribute
 probabilities[classValue] *= calculateProbability(x, mean, stdev);#use normal dist
 return probabilities

def predict(summaries, inputVector):
 probabilities = calculateClassProbabilities(summaries, inputVector)
 bestLabel, bestProb = None, -1
 for classValue, probability in probabilities.items():
 if bestLabel is None or probability > bestProb:
 bestProb = probability
 bestLabel = classValue
 return bestLabel

def getPredictions(summaries, testSet):
 predictions = []
 for i in range(len(testSet)):
 result = predict(summaries, testSet[i])
 predictions.append(result)
 return predictions
def getAccuracy(testSet, predictions):
 correct = 0
 for i in range(len(testSet)):
 if testSet[i][-1] == predictions[i]:
 correct += 1
 return (correct/float(len(testSet))) * 100.0

def main():
 filename = '5data.csv'
 splitRatio = 0.67
 dataset = loadCsv(filename);

 trainingSet, testSet = splitDataset(dataset, splitRatio)
 print('Split {0} rows into train={1} and test={2} rows'.format(len(dataset),
 len(trainingSet), len(testSet)))
 # prepare model
 summaries = summarizeByClass(trainingSet);
 # test model
 predictions = getPredictions(summaries, testSet)
 accuracy = getAccuracy(testSet, predictions)
 print('Accuracy of the classifier is : {0}%'.format(accuracy))

main()

Output

confusion matrix is as follows

[[17 0 0]
 [0 17 0]
 [0 0 11]]

Accuracy metrics

<table>
<thead>
<tr>
<th></th>
<th>precision</th>
<th>recall</th>
<th>f1-score</th>
<th>support</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>11</td>
</tr>
<tr>
<td>avg</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>45</td>
</tr>
</tbody>
</table>
6. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.

import pandas as pd
msg=pd.read_csv('naivetext1.csv',names=['message','label'])
print('The dimensions of the dataset',msg.shape)
msg['labelnum']=msg.label.map({'pos':1,'neg':0})
X=msg.message
y=msg.labelnum
print(X)
print(y)

#splitting the dataset into train and test data
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest = train_test_split(X,y)
print(xtest.shape)
print(xtrain.shape)
print(ytest.shape)
print(ytrain.shape)

#output of count vectoriser is a sparse matrix
from sklearn.feature_extraction.text import CountVectorizer
count_vect = CountVectorizer()
xtrain_dtm = count_vect.fit_transform(xtrain)
xtest_dtm=count_vect.transform(xtest)
print(count_vect.get_feature_names())

df=pd.DataFrame(xtrain_dtm.toarray(),columns=count_vect.get_feature_names())
print(df)#tabular representation
print(xtrain_dtm) #sparse matrix representation

Training Naive Bayes (NB) classifier on training data.
from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB().fit(xtrain_dtm,ytrain)
predicted = clf.predict(xtest_dtm)

#printing accuracy metrics
from sklearn import metrics
print('Accuracy metrics')
print('Accuracy of the classifier is',metrics.accuracy_score(ytest,predicted))
print('Confusion matrix')
print(metrics.confusion_matrix(ytest,predicted))
print('Recall and Precison ')
print(metrics.recall_score(ytest,predicted))
print(metrics.precision_score(ytest,predicted))

""docs_new = ['I like this place', 'My boss is not my saviour']""
X_new_counts = count_vect.transform(docs_new)
predictednew = clf.predict(X_new_counts)
for doc, category in zip(docs_new, predictednew):
 print('%s
> %s' % (doc, msg.labelnum[category]))

I love this sandwich, pos
This is an amazing place, pos
I feel very good about these beers, pos
This is my best work, pos
What an awesome view, pos
I do not like this restaurant, neg
I am tired of this stuff, neg
I can't deal with this, neg
He is my sworn enemy, neg
My boss is horrible, neg
This is an awesome place, pos
I do not like the taste of this juice, neg
I love to dance, pos
I am sick and tired of this place, neg
What a great holiday, pos
That is a bad locality to stay, neg
We will have good fun tomorrow, pos
I went to my enemy's house today, neg

OUTPUT

['about', 'am', 'amazing', 'an', 'and', 'awesome', 'beers', 'best', 'boss', 'can', 'deal',
'do', 'enemy', 'feel', 'fun', 'good', 'have', 'horrible', 'house', 'is', 'like', 'love', 'my',
'not', 'of', 'place', 'restaurant', 'sandwich', 'sick', 'stuff', 'these', 'this', 'tired', 'to',
'today', 'tomorrow', 'very', 'view', 'we', 'went', 'what', 'will', 'with', 'work']

about am amazing an awesome beers best boss can ... today

0 1 0 0 0 0 0 1 0 0 0 ... 0
1 0 0 0 0 0 0 1 0 0 0 ... 0
2 0 0 1 1 0 0 0 0 0 0 ... 0
3 0 0 0 0 0 0 0 0 0 0 ... 1
4 0 0 0 0 0 0 0 0 0 0 ... 0
5 0 1 0 0 1 0 0 0 0 0 ... 0
6 0 0 0 0 0 0 0 0 0 0 ... 0
7 0 0 0 0 0 0 0 0 0 0 ... 0
8 0 1 0 0 0 0 0 0 0 0 ... 0
9 0 0 0 1 0 1 0 0 0 0 ... 0
10 0 0 0 0 0 0 0 0 0 0 ... 0
11 0 0 0 0 0 0 0 0 1 0 ... 0
12 0 0 0 1 0 1 0 0 0 0 ... 0

tomorrow very view we went what will with work

0 0 1 0 0 0 0 0 0 0 0
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
7. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.

From pomegranate import *
Asia=DiscreteDistribution({ "True":0.5, "False":0.5 })
Tuberculosis=ConditionalProbabilityTable(
 [["True", "True", 0.2],
 ["False", "True", 0.01],
 ["False", "False", 0.98]], [asia])
Smoking = DiscreteDistribution({ "True":0.5, "False":0.5 })
Lung = ConditionalProbabilityTable(
 [["True", "True", 0.75],
 ["True", "False", 0.25],
 ["False", "True", 0.02],
 ["False", "False", 0.98]], [smoking])
Bronchitis = ConditionalProbabilityTable(
 [["True", "True", 0.92],
 ["True", "False", 0.08],
 ["False", "True", 0.03],
 ["False", "False", 0.98]], [smoking])
Tuberculosis_or_cancer = ConditionalProbabilityTable(
 [["True", "True", "True", 1.0],
 ["True", "True", "False", 0.0],
 ["True", "False", "True", 1.0],
 ["True", "False", "False", 0.0],
 ["False", "True", "True", 1.0],
 ["False", "True", "False", 0.0],
 ["False", "False", "True", 1.0],
 ["False", "False", "False", 0.0]], [tuberculosis, lung])
Xray = ConditionalProbabilityTable(
 [["True", "True", 0.885],
 ["True", "False", 0.115],
 ["False", "True", 0.04],
 ["False", "False", 0.04]], [asia, smoking, lung])
["False", "False", 0.96], [tuberculosis_or_cancer])
dyspnea = ConditionalProbabilityTable(["True", "True", "True", 0.96],
["True", "True", "False", 0.04],
["True", "False", "True", 0.89],
["True", "False", "False", 0.11],
["False", "True", "True", 0.96],
["False", "True", "False", 0.04],
["False", "False", "True", 0.89],
["False", "False", "False", 0.11]], [tuberculosis_or_cancer, bronchitis])
s0 = State(asia, name="asia")
s1 = State(tuberculosis, name="tuberculosis")
s2 = State(smoking, name="smoker")

network = BayesianNetwork("asia")
network.add_nodes(s0,s1,s2)
network.add_edge(s0,s1)
network.add_edge(s1,s2)
network.bake()
print(network.predict_probal({"tuberculosis": "True"}))
8. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.

```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
X, y_true = make_blobs(n_samples=100, centers = 4, Cluster_std=0.60, random_state=0)
X = X[:, ::-1]
#flip axes for better plotting
from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n_components = 4).fit(X)
lables = gmm.predict(X)
plt.scatter(X[:, 0], X[:, 1], c=lables, s=40, cmap="viridis");
probs = gmm.predict_proba(X)
print(probs[:5].round(3))
size = 50 * probs.max(1) ** 2 # square emphasizes differences
plt.scatter(X[:, 0], X[:, 1], c=lables, cmap="viridis", s=size);

from matplotlib.patches import Ellipse
def draw_ellipse(position, covariance, ax=None, **kwargs):
    """Draw an ellipse with a given position and covariance""
    Ax = ax or plt.gca()
    # Convert covariance to principal axes
    if covariance.shape ==(2,2):
        U, s, Vt = np.linalg.svd(covariance)
        Angle = np.degrees(np.arctan2(U[1, 0], U[0,0]))
        Width, height = 2 * np.sqrt(s)
    else:
        angle = 0
        width, height = 2 * np.sqrt(covariance)
    #Draw the Ellipse
    for nsig in range(1,4):
        ax.add_patch(Ellipse(position, nsig * width, nsig *height, angle, **kwargs))

def plot_gmm(gmm, X, label=True, ax=None):
    ax = ax or plt.gca()
    labels = gmm.fit(X).predict(X)
    if label:
```

Dept of CSE, CIT Gubb
ax.scatter(X[:, 0], x[:, 1], c=labels, s=40, cmap="viridis", zorder=2)
else:
 ax.scatter(X[:, 0], x[:, 1], s=40, zorder=2)
ax.axis(\"equal\")

w_factor = 0.2 / gmm.weights_.max()
for pos, covar, w in zip(gmm.means_, gmm.covariances_, gmm.weights_):
 draw_ellipse(pos, covar, alpha=w * w_factor)

Output

[[1, 0, 0, 0]
 [0, 0, 1, 0]
 [1, 0, 0, 0]
 [1, 0, 0, 0]
 [1, 0, 0, 0]]
K-means

from sklearn.cluster import KMeans

from sklearn import metrics
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
data=pd.read_csv("kmeansdata.csv")
df1=pd.DataFrame(data)
print(df1)
f1 = df1['Distance_Feature'].values
f2 = df1['Speeding_Feature'].values

X=np.matrix(list(zip(f1,f2)))
plt.plot()
plt.xlim([0, 100])
plt.ylim([0, 50])
plt.title('Dataset')
plt.ylabel('speeding_feature')
plt.xlabel('Distance_Feature')
plt.scatter(f1,f2)
plt.show()

create new plot and data
plt.plot()
colors = ['b', 'g', 'r']
markers = ['o', 'v', 's']

KMeans algorithm
K = 3
kmeans_model = KMeans(n_clusters=3).fit(X)

plt.plot()
for i, l in enumerate(kmeans_model.labels_):
 plt.plot(f1[i], f2[i], color=colors[l], marker=markers[l],ls='None')
 plt.xlim([0, 100])
 plt.ylim([0, 50])

plt.show()

Driver_ID,Distance_Feature,Speeding_Feature
3423311935,71.24,28
3423313212,52.53,25
3423313724,64.54,27
3423311373,55.69,22
3423310999,54.58,25
3423313857,41.91,10
3423312432,58.64,20
3423311434,52.02,8
3423311328,31.25,34
3423312488,44.31,19
3423311254,49.35,40
3423312943,58.07,45
3423312536,44.22,22
3423311542,55.73,19
3423312176,46.63,43
3423314176,52.97,32
3423314202,46.25,35
3423311346,51.55,27
3423310666,57.05,26
3423313527,58.45,30
3423312182,43.42,23
3423313590,55.68,37
3423312268,55.15,18
9. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.

```python
import csv
import random
import math
import operator

def loadDataset(filename, split, trainingSet=[], testSet=[]):
    with open(filename, 'rb') as csvfile:
        lines = csv.reader(csvfile)
        dataset = list(lines)
        for x in range(len(dataset)-1):
            for y in range(4):
                dataset[x][y] = float(dataset[x][y])
            if random.random() < split:
                trainingSet.append(dataset[x])
            else:
                testSet.append(dataset[x])

def euclideanDistance(instance1, instance2, length):
    distance = 0
    for x in range(length):
        distance += pow((instance1[x] - instance2[x]), 2)
    return math.sqrt(distance)

def getNeighbors(trainingSet, testInstance, k):
    distances = []
    length = len(testInstance)-1
    for x in range(len(trainingSet)):
        dist = euclideanDistance(testInstance, trainingSet[x], length)
        distances.append((trainingSet[x], dist))
    distances.sort(key=operator.itemgetter(1))
    neighbors = []
    for x in range(k):
        neighbors.append(distances[x][0])
    return neighbors

def getResponse(neighbors):
    classVotes = {}
    for x in range(len(neighbors)):
        response = neighbors[x][-1]
        if response in classVotes:
            classVotes[response] += 1
        else:
            classVotes[response] = 1
```

sortedVotes = sorted(classVotes.iteritems(), reverse=True)
return sortedVotes[0][0]

def getAccuracy(testSet, predictions):
correct = 0
for x in range(len(testSet)):
 key=operator.itemgetter(1),
 if testSet[x][-1] == predictions[x]:
 correct += 1
return (correct/float(len(testSet))) * 100.0

def main():
 # prepare data
 trainingSet=[]
testSet=[]
split = 0.67
loadDataset('knndat.data', split, trainingSet, testSet)
print('Train set: ' + repr(len(trainingSet)))
print('Test set: ' + repr(len(testSet)))
generate predictions
predictions=[]
k=3
for x in range(len(testSet)):
 neighbors = getNeighbors(trainingSet, testSet[x], k)
 result = getResponse(neighbors)
 predictions.append(result)
 print('> predicted=' + repr(result) + ', actual=' + repr(testSet[x][-1]))
accuracy = getAccuracy(testSet, predictions)
print('Accuracy: ' + repr(accuracy) + '%')
main()

OUTPUT

Confusion matrix is as follows

```
[[11 0 0]
 [0 9 1]
[0 1 8]]
```
Accuracy metrics

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>9</td>
</tr>
</tbody>
</table>

Avg/Total 0.93 0.93 0.93 30
10. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

```python
from numpy import *
import operator
from os import listdir
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import numpy.linalg as np
from scipy.stats.stats import pearsonr

def kernel(point,xmat, k):
    m,n = np.shape(xmat)
    weights = np.mat(np.eye((m)))
    for j in range(m):
        diff = point - X[j]
        weights[j,j] = np.exp(diff*diff.T/(-2.0*k**2))
    return weights

def localWeight(point,xmat,ymat,k):
    wei = kernel(point,xmat,k)
    W=(X.T*(wei*X)).I*(X.T*(wei*ymat.T))
    return W

def localWeightRegression(xmat,ymat,k):
    m,n = np.shape(xmat)
    ypred = np.zeros(m)
    for i in range(m):
        ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
    return ypred

# load data points
data = pd.read_csv('data10.csv')
bill = np.array(data.total_bill)
tip = np.array(data.tip)

#preparing and add 1 in bill
mbill = np.mat(bill)
mtip = np.mat(tip)
m = np.shape(mbill)[1]
one = np.mat(np.ones(m))
X= np.hstack((one.T,mbill.T))

#set k here
ypred = localWeightRegression(X,mtip,2)
```
SortIndex = X[:,1].argsort(0)
xsort = X[SortIndex][:,0]

Output
Viva Questions

1. What is machine learning?
2. Define supervised learning
3. Define unsupervised learning
4. Define semi supervised learning
5. Define reinforcement learning
6. What do you mean by hypotheses
7. What is classification
8. What is clustering
9. Define precision, accuracy and recall
10. Define entropy
11. Define regression
12. How Knn is different from k-means clustering
13. What is concept learning
14. Define specific boundary and general boundary
15. Define target function
16. Define decision tree
17. What is ANN
18. Explain gradient descent approximation
19. State Bayes theorem
20. Define Bayesian belief networks
21. Differentiate hard and soft clustering
22. Define variance
23. What is inductive machine learning
24. Why K nearest neighbour algorithm is lazy learning algorithm
25. Why naïve Bayes is naïve
26. Mention classification algorithms
27. Define pruning
28. Differentiate Clustering and classification
29. Mention clustering algorithms
30. Define Bias